Description: Hilbert space operator cancellation law. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | honpncan.1 | ⊢ 𝑅 : ℋ ⟶ ℋ | |
| honpncan.2 | ⊢ 𝑆 : ℋ ⟶ ℋ | ||
| honpncan.3 | ⊢ 𝑇 : ℋ ⟶ ℋ | ||
| Assertion | honpncani | ⊢ ( ( 𝑅 −op 𝑆 ) +op ( 𝑆 −op 𝑇 ) ) = ( 𝑅 −op 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | honpncan.1 | ⊢ 𝑅 : ℋ ⟶ ℋ | |
| 2 | honpncan.2 | ⊢ 𝑆 : ℋ ⟶ ℋ | |
| 3 | honpncan.3 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
| 4 | 1 2 | hosubcli | ⊢ ( 𝑅 −op 𝑆 ) : ℋ ⟶ ℋ |
| 5 | 4 2 3 | hoaddsubassi | ⊢ ( ( ( 𝑅 −op 𝑆 ) +op 𝑆 ) −op 𝑇 ) = ( ( 𝑅 −op 𝑆 ) +op ( 𝑆 −op 𝑇 ) ) |
| 6 | 1 2 | honpcani | ⊢ ( ( 𝑅 −op 𝑆 ) +op 𝑆 ) = 𝑅 |
| 7 | 6 | oveq1i | ⊢ ( ( ( 𝑅 −op 𝑆 ) +op 𝑆 ) −op 𝑇 ) = ( 𝑅 −op 𝑇 ) |
| 8 | 5 7 | eqtr3i | ⊢ ( ( 𝑅 −op 𝑆 ) +op ( 𝑆 −op 𝑇 ) ) = ( 𝑅 −op 𝑇 ) |