Metamath Proof Explorer


Theorem honpncani

Description: Hilbert space operator cancellation law. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses honpncan.1 𝑅 : ℋ ⟶ ℋ
honpncan.2 𝑆 : ℋ ⟶ ℋ
honpncan.3 𝑇 : ℋ ⟶ ℋ
Assertion honpncani ( ( 𝑅op 𝑆 ) +op ( 𝑆op 𝑇 ) ) = ( 𝑅op 𝑇 )

Proof

Step Hyp Ref Expression
1 honpncan.1 𝑅 : ℋ ⟶ ℋ
2 honpncan.2 𝑆 : ℋ ⟶ ℋ
3 honpncan.3 𝑇 : ℋ ⟶ ℋ
4 1 2 hosubcli ( 𝑅op 𝑆 ) : ℋ ⟶ ℋ
5 4 2 3 hoaddsubassi ( ( ( 𝑅op 𝑆 ) +op 𝑆 ) −op 𝑇 ) = ( ( 𝑅op 𝑆 ) +op ( 𝑆op 𝑇 ) )
6 1 2 honpcani ( ( 𝑅op 𝑆 ) +op 𝑆 ) = 𝑅
7 6 oveq1i ( ( ( 𝑅op 𝑆 ) +op 𝑆 ) −op 𝑇 ) = ( 𝑅op 𝑇 )
8 5 7 eqtr3i ( ( 𝑅op 𝑆 ) +op ( 𝑆op 𝑇 ) ) = ( 𝑅op 𝑇 )