Metamath Proof Explorer


Theorem hopncani

Description: Hilbert space operator cancellation law. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hosd1.2 𝑇 : ℋ ⟶ ℋ
hosd1.3 𝑈 : ℋ ⟶ ℋ
Assertion hopncani ( ( 𝑇 +op 𝑈 ) −op 𝑈 ) = 𝑇

Proof

Step Hyp Ref Expression
1 hosd1.2 𝑇 : ℋ ⟶ ℋ
2 hosd1.3 𝑈 : ℋ ⟶ ℋ
3 1 2 2 hoaddsubassi ( ( 𝑇 +op 𝑈 ) −op 𝑈 ) = ( 𝑇 +op ( 𝑈op 𝑈 ) )
4 2 hodidi ( 𝑈op 𝑈 ) = 0hop
5 4 oveq2i ( 𝑇 +op ( 𝑈op 𝑈 ) ) = ( 𝑇 +op 0hop )
6 1 hoaddid1i ( 𝑇 +op 0hop ) = 𝑇
7 3 5 6 3eqtri ( ( 𝑇 +op 𝑈 ) −op 𝑈 ) = 𝑇