Description: Hilbert space operator cancellation law. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hosd1.2 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
| hosd1.3 | ⊢ 𝑈 : ℋ ⟶ ℋ | ||
| Assertion | hopncani | ⊢ ( ( 𝑇 +op 𝑈 ) −op 𝑈 ) = 𝑇 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hosd1.2 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
| 2 | hosd1.3 | ⊢ 𝑈 : ℋ ⟶ ℋ | |
| 3 | 1 2 2 | hoaddsubassi | ⊢ ( ( 𝑇 +op 𝑈 ) −op 𝑈 ) = ( 𝑇 +op ( 𝑈 −op 𝑈 ) ) | 
| 4 | 2 | hodidi | ⊢ ( 𝑈 −op 𝑈 ) = 0hop | 
| 5 | 4 | oveq2i | ⊢ ( 𝑇 +op ( 𝑈 −op 𝑈 ) ) = ( 𝑇 +op 0hop ) | 
| 6 | 1 | hoaddridi | ⊢ ( 𝑇 +op 0hop ) = 𝑇 | 
| 7 | 3 5 6 | 3eqtri | ⊢ ( ( 𝑇 +op 𝑈 ) −op 𝑈 ) = 𝑇 |