| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hosd1.2 |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 2 |
|
hosd1.3 |
⊢ 𝑈 : ℋ ⟶ ℋ |
| 3 |
|
ho0f |
⊢ 0hop : ℋ ⟶ ℋ |
| 4 |
3 2
|
hosubcli |
⊢ ( 0hop −op 𝑈 ) : ℋ ⟶ ℋ |
| 5 |
1 2
|
hoaddcli |
⊢ ( 𝑇 +op 𝑈 ) : ℋ ⟶ ℋ |
| 6 |
4 5
|
hoaddcomi |
⊢ ( ( 0hop −op 𝑈 ) +op ( 𝑇 +op 𝑈 ) ) = ( ( 𝑇 +op 𝑈 ) +op ( 0hop −op 𝑈 ) ) |
| 7 |
5 3 2
|
hoaddsubassi |
⊢ ( ( ( 𝑇 +op 𝑈 ) +op 0hop ) −op 𝑈 ) = ( ( 𝑇 +op 𝑈 ) +op ( 0hop −op 𝑈 ) ) |
| 8 |
6 7
|
eqtr4i |
⊢ ( ( 0hop −op 𝑈 ) +op ( 𝑇 +op 𝑈 ) ) = ( ( ( 𝑇 +op 𝑈 ) +op 0hop ) −op 𝑈 ) |
| 9 |
5
|
hoaddridi |
⊢ ( ( 𝑇 +op 𝑈 ) +op 0hop ) = ( 𝑇 +op 𝑈 ) |
| 10 |
9
|
oveq1i |
⊢ ( ( ( 𝑇 +op 𝑈 ) +op 0hop ) −op 𝑈 ) = ( ( 𝑇 +op 𝑈 ) −op 𝑈 ) |
| 11 |
1 2 2
|
hoaddsubi |
⊢ ( ( 𝑇 +op 𝑈 ) −op 𝑈 ) = ( ( 𝑇 −op 𝑈 ) +op 𝑈 ) |
| 12 |
1 2
|
hosubcli |
⊢ ( 𝑇 −op 𝑈 ) : ℋ ⟶ ℋ |
| 13 |
12 2
|
hoaddcomi |
⊢ ( ( 𝑇 −op 𝑈 ) +op 𝑈 ) = ( 𝑈 +op ( 𝑇 −op 𝑈 ) ) |
| 14 |
2 1
|
hodseqi |
⊢ ( 𝑈 +op ( 𝑇 −op 𝑈 ) ) = 𝑇 |
| 15 |
11 13 14
|
3eqtri |
⊢ ( ( 𝑇 +op 𝑈 ) −op 𝑈 ) = 𝑇 |
| 16 |
8 10 15
|
3eqtri |
⊢ ( ( 0hop −op 𝑈 ) +op ( 𝑇 +op 𝑈 ) ) = 𝑇 |
| 17 |
1 4 5
|
hodsi |
⊢ ( ( 𝑇 −op ( 0hop −op 𝑈 ) ) = ( 𝑇 +op 𝑈 ) ↔ ( ( 0hop −op 𝑈 ) +op ( 𝑇 +op 𝑈 ) ) = 𝑇 ) |
| 18 |
16 17
|
mpbir |
⊢ ( 𝑇 −op ( 0hop −op 𝑈 ) ) = ( 𝑇 +op 𝑈 ) |
| 19 |
18
|
eqcomi |
⊢ ( 𝑇 +op 𝑈 ) = ( 𝑇 −op ( 0hop −op 𝑈 ) ) |