Step |
Hyp |
Ref |
Expression |
1 |
|
hosd1.2 |
⊢ 𝑇 : ℋ ⟶ ℋ |
2 |
|
hosd1.3 |
⊢ 𝑈 : ℋ ⟶ ℋ |
3 |
|
ho0f |
⊢ 0hop : ℋ ⟶ ℋ |
4 |
3 2
|
hosubcli |
⊢ ( 0hop −op 𝑈 ) : ℋ ⟶ ℋ |
5 |
1 2
|
hoaddcli |
⊢ ( 𝑇 +op 𝑈 ) : ℋ ⟶ ℋ |
6 |
4 5
|
hoaddcomi |
⊢ ( ( 0hop −op 𝑈 ) +op ( 𝑇 +op 𝑈 ) ) = ( ( 𝑇 +op 𝑈 ) +op ( 0hop −op 𝑈 ) ) |
7 |
5 3 2
|
hoaddsubassi |
⊢ ( ( ( 𝑇 +op 𝑈 ) +op 0hop ) −op 𝑈 ) = ( ( 𝑇 +op 𝑈 ) +op ( 0hop −op 𝑈 ) ) |
8 |
6 7
|
eqtr4i |
⊢ ( ( 0hop −op 𝑈 ) +op ( 𝑇 +op 𝑈 ) ) = ( ( ( 𝑇 +op 𝑈 ) +op 0hop ) −op 𝑈 ) |
9 |
5
|
hoaddid1i |
⊢ ( ( 𝑇 +op 𝑈 ) +op 0hop ) = ( 𝑇 +op 𝑈 ) |
10 |
9
|
oveq1i |
⊢ ( ( ( 𝑇 +op 𝑈 ) +op 0hop ) −op 𝑈 ) = ( ( 𝑇 +op 𝑈 ) −op 𝑈 ) |
11 |
1 2 2
|
hoaddsubi |
⊢ ( ( 𝑇 +op 𝑈 ) −op 𝑈 ) = ( ( 𝑇 −op 𝑈 ) +op 𝑈 ) |
12 |
1 2
|
hosubcli |
⊢ ( 𝑇 −op 𝑈 ) : ℋ ⟶ ℋ |
13 |
12 2
|
hoaddcomi |
⊢ ( ( 𝑇 −op 𝑈 ) +op 𝑈 ) = ( 𝑈 +op ( 𝑇 −op 𝑈 ) ) |
14 |
2 1
|
hodseqi |
⊢ ( 𝑈 +op ( 𝑇 −op 𝑈 ) ) = 𝑇 |
15 |
11 13 14
|
3eqtri |
⊢ ( ( 𝑇 +op 𝑈 ) −op 𝑈 ) = 𝑇 |
16 |
8 10 15
|
3eqtri |
⊢ ( ( 0hop −op 𝑈 ) +op ( 𝑇 +op 𝑈 ) ) = 𝑇 |
17 |
1 4 5
|
hodsi |
⊢ ( ( 𝑇 −op ( 0hop −op 𝑈 ) ) = ( 𝑇 +op 𝑈 ) ↔ ( ( 0hop −op 𝑈 ) +op ( 𝑇 +op 𝑈 ) ) = 𝑇 ) |
18 |
16 17
|
mpbir |
⊢ ( 𝑇 −op ( 0hop −op 𝑈 ) ) = ( 𝑇 +op 𝑈 ) |
19 |
18
|
eqcomi |
⊢ ( 𝑇 +op 𝑈 ) = ( 𝑇 −op ( 0hop −op 𝑈 ) ) |