Description: Hilbert space operator sum expressed in terms of difference. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hosd1.2 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
hosd1.3 | ⊢ 𝑈 : ℋ ⟶ ℋ | ||
Assertion | hosd2i | ⊢ ( 𝑇 +op 𝑈 ) = ( 𝑇 −op ( ( 𝑈 −op 𝑈 ) −op 𝑈 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hosd1.2 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
2 | hosd1.3 | ⊢ 𝑈 : ℋ ⟶ ℋ | |
3 | 1 2 | hosd1i | ⊢ ( 𝑇 +op 𝑈 ) = ( 𝑇 −op ( 0hop −op 𝑈 ) ) |
4 | 2 | hodidi | ⊢ ( 𝑈 −op 𝑈 ) = 0hop |
5 | 4 | oveq1i | ⊢ ( ( 𝑈 −op 𝑈 ) −op 𝑈 ) = ( 0hop −op 𝑈 ) |
6 | 5 | oveq2i | ⊢ ( 𝑇 −op ( ( 𝑈 −op 𝑈 ) −op 𝑈 ) ) = ( 𝑇 −op ( 0hop −op 𝑈 ) ) |
7 | 3 6 | eqtr4i | ⊢ ( 𝑇 +op 𝑈 ) = ( 𝑇 −op ( ( 𝑈 −op 𝑈 ) −op 𝑈 ) ) |