Metamath Proof Explorer


Theorem hosd2i

Description: Hilbert space operator sum expressed in terms of difference. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses hosd1.2 𝑇 : ℋ ⟶ ℋ
hosd1.3 𝑈 : ℋ ⟶ ℋ
Assertion hosd2i ( 𝑇 +op 𝑈 ) = ( 𝑇op ( ( 𝑈op 𝑈 ) −op 𝑈 ) )

Proof

Step Hyp Ref Expression
1 hosd1.2 𝑇 : ℋ ⟶ ℋ
2 hosd1.3 𝑈 : ℋ ⟶ ℋ
3 1 2 hosd1i ( 𝑇 +op 𝑈 ) = ( 𝑇op ( 0hopop 𝑈 ) )
4 2 hodidi ( 𝑈op 𝑈 ) = 0hop
5 4 oveq1i ( ( 𝑈op 𝑈 ) −op 𝑈 ) = ( 0hopop 𝑈 )
6 5 oveq2i ( 𝑇op ( ( 𝑈op 𝑈 ) −op 𝑈 ) ) = ( 𝑇op ( 0hopop 𝑈 ) )
7 3 6 eqtr4i ( 𝑇 +op 𝑈 ) = ( 𝑇op ( ( 𝑈op 𝑈 ) −op 𝑈 ) )