Metamath Proof Explorer


Theorem hosubcli

Description: Mapping of difference of Hilbert space operators. (Contributed by NM, 14-Nov-2000) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses hoeq.1 𝑆 : ℋ ⟶ ℋ
hoeq.2 𝑇 : ℋ ⟶ ℋ
Assertion hosubcli ( 𝑆op 𝑇 ) : ℋ ⟶ ℋ

Proof

Step Hyp Ref Expression
1 hoeq.1 𝑆 : ℋ ⟶ ℋ
2 hoeq.2 𝑇 : ℋ ⟶ ℋ
3 hodmval ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆op 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆𝑥 ) − ( 𝑇𝑥 ) ) ) )
4 1 2 3 mp2an ( 𝑆op 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆𝑥 ) − ( 𝑇𝑥 ) ) )
5 1 ffvelrni ( 𝑥 ∈ ℋ → ( 𝑆𝑥 ) ∈ ℋ )
6 2 ffvelrni ( 𝑥 ∈ ℋ → ( 𝑇𝑥 ) ∈ ℋ )
7 hvsubcl ( ( ( 𝑆𝑥 ) ∈ ℋ ∧ ( 𝑇𝑥 ) ∈ ℋ ) → ( ( 𝑆𝑥 ) − ( 𝑇𝑥 ) ) ∈ ℋ )
8 5 6 7 syl2anc ( 𝑥 ∈ ℋ → ( ( 𝑆𝑥 ) − ( 𝑇𝑥 ) ) ∈ ℋ )
9 4 8 fmpti ( 𝑆op 𝑇 ) : ℋ ⟶ ℋ