Step |
Hyp |
Ref |
Expression |
1 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
2 |
|
homulcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( - 1 ·op 𝑈 ) : ℋ ⟶ ℋ ) |
3 |
1 2
|
mpan |
⊢ ( 𝑈 : ℋ ⟶ ℋ → ( - 1 ·op 𝑈 ) : ℋ ⟶ ℋ ) |
4 |
|
hoadddi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ ( - 1 ·op 𝑈 ) : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝑇 +op ( - 1 ·op 𝑈 ) ) ) = ( ( 𝐴 ·op 𝑇 ) +op ( 𝐴 ·op ( - 1 ·op 𝑈 ) ) ) ) |
5 |
3 4
|
syl3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝑇 +op ( - 1 ·op 𝑈 ) ) ) = ( ( 𝐴 ·op 𝑇 ) +op ( 𝐴 ·op ( - 1 ·op 𝑈 ) ) ) ) |
6 |
|
homul12 |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( - 1 ·op 𝑈 ) ) = ( - 1 ·op ( 𝐴 ·op 𝑈 ) ) ) |
7 |
1 6
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( - 1 ·op 𝑈 ) ) = ( - 1 ·op ( 𝐴 ·op 𝑈 ) ) ) |
8 |
7
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( - 1 ·op 𝑈 ) ) = ( - 1 ·op ( 𝐴 ·op 𝑈 ) ) ) |
9 |
8
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( ( 𝐴 ·op 𝑇 ) +op ( 𝐴 ·op ( - 1 ·op 𝑈 ) ) ) = ( ( 𝐴 ·op 𝑇 ) +op ( - 1 ·op ( 𝐴 ·op 𝑈 ) ) ) ) |
10 |
5 9
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝑇 +op ( - 1 ·op 𝑈 ) ) ) = ( ( 𝐴 ·op 𝑇 ) +op ( - 1 ·op ( 𝐴 ·op 𝑈 ) ) ) ) |
11 |
|
honegsub |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝑇 +op ( - 1 ·op 𝑈 ) ) = ( 𝑇 −op 𝑈 ) ) |
12 |
11
|
oveq2d |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝑇 +op ( - 1 ·op 𝑈 ) ) ) = ( 𝐴 ·op ( 𝑇 −op 𝑈 ) ) ) |
13 |
12
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝑇 +op ( - 1 ·op 𝑈 ) ) ) = ( 𝐴 ·op ( 𝑇 −op 𝑈 ) ) ) |
14 |
|
homulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
15 |
|
homulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑈 ) : ℋ ⟶ ℋ ) |
16 |
|
honegsub |
⊢ ( ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ∧ ( 𝐴 ·op 𝑈 ) : ℋ ⟶ ℋ ) → ( ( 𝐴 ·op 𝑇 ) +op ( - 1 ·op ( 𝐴 ·op 𝑈 ) ) ) = ( ( 𝐴 ·op 𝑇 ) −op ( 𝐴 ·op 𝑈 ) ) ) |
17 |
14 15 16
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ ( 𝐴 ∈ ℂ ∧ 𝑈 : ℋ ⟶ ℋ ) ) → ( ( 𝐴 ·op 𝑇 ) +op ( - 1 ·op ( 𝐴 ·op 𝑈 ) ) ) = ( ( 𝐴 ·op 𝑇 ) −op ( 𝐴 ·op 𝑈 ) ) ) |
18 |
17
|
3impdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( ( 𝐴 ·op 𝑇 ) +op ( - 1 ·op ( 𝐴 ·op 𝑈 ) ) ) = ( ( 𝐴 ·op 𝑇 ) −op ( 𝐴 ·op 𝑈 ) ) ) |
19 |
10 13 18
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝑇 −op 𝑈 ) ) = ( ( 𝐴 ·op 𝑇 ) −op ( 𝐴 ·op 𝑈 ) ) ) |