| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hosd1.2 | ⊢ 𝑇 :  ℋ ⟶  ℋ | 
						
							| 2 |  | hosd1.3 | ⊢ 𝑈 :  ℋ ⟶  ℋ | 
						
							| 3 | 1 2 | honegsubi | ⊢ ( 𝑇  +op  ( - 1  ·op  𝑈 ) )  =  ( 𝑇  −op  𝑈 ) | 
						
							| 4 | 3 | eqeq1i | ⊢ ( ( 𝑇  +op  ( - 1  ·op  𝑈 ) )  =   0hop   ↔  ( 𝑇  −op  𝑈 )  =   0hop  ) | 
						
							| 5 |  | oveq1 | ⊢ ( ( 𝑇  +op  ( - 1  ·op  𝑈 ) )  =   0hop   →  ( ( 𝑇  +op  ( - 1  ·op  𝑈 ) )  +op  𝑈 )  =  (  0hop   +op  𝑈 ) ) | 
						
							| 6 | 4 5 | sylbir | ⊢ ( ( 𝑇  −op  𝑈 )  =   0hop   →  ( ( 𝑇  +op  ( - 1  ·op  𝑈 ) )  +op  𝑈 )  =  (  0hop   +op  𝑈 ) ) | 
						
							| 7 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 8 |  | homulcl | ⊢ ( ( - 1  ∈  ℂ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( - 1  ·op  𝑈 ) :  ℋ ⟶  ℋ ) | 
						
							| 9 | 7 2 8 | mp2an | ⊢ ( - 1  ·op  𝑈 ) :  ℋ ⟶  ℋ | 
						
							| 10 | 1 9 2 | hoadd32i | ⊢ ( ( 𝑇  +op  ( - 1  ·op  𝑈 ) )  +op  𝑈 )  =  ( ( 𝑇  +op  𝑈 )  +op  ( - 1  ·op  𝑈 ) ) | 
						
							| 11 | 1 2 9 | hoaddassi | ⊢ ( ( 𝑇  +op  𝑈 )  +op  ( - 1  ·op  𝑈 ) )  =  ( 𝑇  +op  ( 𝑈  +op  ( - 1  ·op  𝑈 ) ) ) | 
						
							| 12 | 2 2 | honegsubi | ⊢ ( 𝑈  +op  ( - 1  ·op  𝑈 ) )  =  ( 𝑈  −op  𝑈 ) | 
						
							| 13 | 2 | hodidi | ⊢ ( 𝑈  −op  𝑈 )  =   0hop | 
						
							| 14 | 12 13 | eqtri | ⊢ ( 𝑈  +op  ( - 1  ·op  𝑈 ) )  =   0hop | 
						
							| 15 | 14 | oveq2i | ⊢ ( 𝑇  +op  ( 𝑈  +op  ( - 1  ·op  𝑈 ) ) )  =  ( 𝑇  +op   0hop  ) | 
						
							| 16 | 1 | hoaddridi | ⊢ ( 𝑇  +op   0hop  )  =  𝑇 | 
						
							| 17 | 15 16 | eqtri | ⊢ ( 𝑇  +op  ( 𝑈  +op  ( - 1  ·op  𝑈 ) ) )  =  𝑇 | 
						
							| 18 | 11 17 | eqtri | ⊢ ( ( 𝑇  +op  𝑈 )  +op  ( - 1  ·op  𝑈 ) )  =  𝑇 | 
						
							| 19 | 10 18 | eqtri | ⊢ ( ( 𝑇  +op  ( - 1  ·op  𝑈 ) )  +op  𝑈 )  =  𝑇 | 
						
							| 20 |  | ho0f | ⊢  0hop  :  ℋ ⟶  ℋ | 
						
							| 21 | 20 2 | hoaddcomi | ⊢ (  0hop   +op  𝑈 )  =  ( 𝑈  +op   0hop  ) | 
						
							| 22 | 2 | hoaddridi | ⊢ ( 𝑈  +op   0hop  )  =  𝑈 | 
						
							| 23 | 21 22 | eqtri | ⊢ (  0hop   +op  𝑈 )  =  𝑈 | 
						
							| 24 | 6 19 23 | 3eqtr3g | ⊢ ( ( 𝑇  −op  𝑈 )  =   0hop   →  𝑇  =  𝑈 ) | 
						
							| 25 |  | oveq1 | ⊢ ( 𝑇  =  𝑈  →  ( 𝑇  −op  𝑈 )  =  ( 𝑈  −op  𝑈 ) ) | 
						
							| 26 | 25 13 | eqtrdi | ⊢ ( 𝑇  =  𝑈  →  ( 𝑇  −op  𝑈 )  =   0hop  ) | 
						
							| 27 | 24 26 | impbii | ⊢ ( ( 𝑇  −op  𝑈 )  =   0hop   ↔  𝑇  =  𝑈 ) |