Metamath Proof Explorer
		
		
		
		Description:  Functionality of difference of Hilbert space operators.  (Contributed by NM, 2-Jun-2006)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | hoeq.1 | ⊢ 𝑆 :  ℋ ⟶  ℋ | 
					
						|  |  | hoeq.2 | ⊢ 𝑇 :  ℋ ⟶  ℋ | 
				
					|  | Assertion | hosubfni | ⊢  ( 𝑆  −op  𝑇 )  Fn   ℋ | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoeq.1 | ⊢ 𝑆 :  ℋ ⟶  ℋ | 
						
							| 2 |  | hoeq.2 | ⊢ 𝑇 :  ℋ ⟶  ℋ | 
						
							| 3 | 1 2 | hosubcli | ⊢ ( 𝑆  −op  𝑇 ) :  ℋ ⟶  ℋ | 
						
							| 4 |  | ffn | ⊢ ( ( 𝑆  −op  𝑇 ) :  ℋ ⟶  ℋ  →  ( 𝑆  −op  𝑇 )  Fn   ℋ ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( 𝑆  −op  𝑇 )  Fn   ℋ |