Metamath Proof Explorer


Theorem hosubid1

Description: The zero operator subtracted from a Hilbert space operator. (Contributed by NM, 25-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion hosubid1 ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇op 0hop ) = 𝑇 )

Proof

Step Hyp Ref Expression
1 ho0f 0hop : ℋ ⟶ ℋ
2 ho0sub ( ( 𝑇 : ℋ ⟶ ℋ ∧ 0hop : ℋ ⟶ ℋ ) → ( 𝑇op 0hop ) = ( 𝑇 +op ( 0hopop 0hop ) ) )
3 1 2 mpan2 ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇op 0hop ) = ( 𝑇 +op ( 0hopop 0hop ) ) )
4 1 hodidi ( 0hopop 0hop ) = 0hop
5 4 oveq2i ( 𝑇 +op ( 0hopop 0hop ) ) = ( 𝑇 +op 0hop )
6 hoaddid1 ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 +op 0hop ) = 𝑇 )
7 5 6 syl5eq ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 +op ( 0hopop 0hop ) ) = 𝑇 )
8 3 7 eqtrd ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇op 0hop ) = 𝑇 )