Metamath Proof Explorer


Theorem hosubsub4

Description: Law for double subtraction of Hilbert space operators. (Contributed by NM, 25-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hosubsub4 ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( ( 𝑆op 𝑇 ) −op 𝑈 ) = ( 𝑆op ( 𝑇 +op 𝑈 ) ) )

Proof

Step Hyp Ref Expression
1 neg1cn - 1 ∈ ℂ
2 homulcl ( ( - 1 ∈ ℂ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( - 1 ·op 𝑈 ) : ℋ ⟶ ℋ )
3 1 2 mpan ( 𝑈 : ℋ ⟶ ℋ → ( - 1 ·op 𝑈 ) : ℋ ⟶ ℋ )
4 hosubsub ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ ( - 1 ·op 𝑈 ) : ℋ ⟶ ℋ ) → ( 𝑆op ( 𝑇op ( - 1 ·op 𝑈 ) ) ) = ( ( 𝑆op 𝑇 ) +op ( - 1 ·op 𝑈 ) ) )
5 3 4 syl3an3 ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝑆op ( 𝑇op ( - 1 ·op 𝑈 ) ) ) = ( ( 𝑆op 𝑇 ) +op ( - 1 ·op 𝑈 ) ) )
6 hosubneg ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝑇op ( - 1 ·op 𝑈 ) ) = ( 𝑇 +op 𝑈 ) )
7 6 3adant1 ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝑇op ( - 1 ·op 𝑈 ) ) = ( 𝑇 +op 𝑈 ) )
8 7 oveq2d ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝑆op ( 𝑇op ( - 1 ·op 𝑈 ) ) ) = ( 𝑆op ( 𝑇 +op 𝑈 ) ) )
9 hosubcl ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆op 𝑇 ) : ℋ ⟶ ℋ )
10 honegsub ( ( ( 𝑆op 𝑇 ) : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( ( 𝑆op 𝑇 ) +op ( - 1 ·op 𝑈 ) ) = ( ( 𝑆op 𝑇 ) −op 𝑈 ) )
11 9 10 stoic3 ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( ( 𝑆op 𝑇 ) +op ( - 1 ·op 𝑈 ) ) = ( ( 𝑆op 𝑇 ) −op 𝑈 ) )
12 5 8 11 3eqtr3rd ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( ( 𝑆op 𝑇 ) −op 𝑈 ) = ( 𝑆op ( 𝑇 +op 𝑈 ) ) )