Metamath Proof Explorer


Theorem hpgbr

Description: Half-planes : property for points A and B to belong to the same open half plane delimited by line D . Definition 9.7 of Schwabhauser p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses ishpg.p 𝑃 = ( Base ‘ 𝐺 )
ishpg.i 𝐼 = ( Itv ‘ 𝐺 )
ishpg.l 𝐿 = ( LineG ‘ 𝐺 )
ishpg.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
ishpg.g ( 𝜑𝐺 ∈ TarskiG )
ishpg.d ( 𝜑𝐷 ∈ ran 𝐿 )
hpgbr.a ( 𝜑𝐴𝑃 )
hpgbr.b ( 𝜑𝐵𝑃 )
Assertion hpgbr ( 𝜑 → ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ↔ ∃ 𝑐𝑃 ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) )

Proof

Step Hyp Ref Expression
1 ishpg.p 𝑃 = ( Base ‘ 𝐺 )
2 ishpg.i 𝐼 = ( Itv ‘ 𝐺 )
3 ishpg.l 𝐿 = ( LineG ‘ 𝐺 )
4 ishpg.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
5 ishpg.g ( 𝜑𝐺 ∈ TarskiG )
6 ishpg.d ( 𝜑𝐷 ∈ ran 𝐿 )
7 hpgbr.a ( 𝜑𝐴𝑃 )
8 hpgbr.b ( 𝜑𝐵𝑃 )
9 1 2 3 4 5 6 ishpg ( 𝜑 → ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( 𝑎 𝑂 𝑐𝑏 𝑂 𝑐 ) } )
10 simpl ( ( 𝑎 = 𝑢𝑏 = 𝑣 ) → 𝑎 = 𝑢 )
11 10 breq1d ( ( 𝑎 = 𝑢𝑏 = 𝑣 ) → ( 𝑎 𝑂 𝑐𝑢 𝑂 𝑐 ) )
12 simpr ( ( 𝑎 = 𝑢𝑏 = 𝑣 ) → 𝑏 = 𝑣 )
13 12 breq1d ( ( 𝑎 = 𝑢𝑏 = 𝑣 ) → ( 𝑏 𝑂 𝑐𝑣 𝑂 𝑐 ) )
14 11 13 anbi12d ( ( 𝑎 = 𝑢𝑏 = 𝑣 ) → ( ( 𝑎 𝑂 𝑐𝑏 𝑂 𝑐 ) ↔ ( 𝑢 𝑂 𝑐𝑣 𝑂 𝑐 ) ) )
15 14 rexbidv ( ( 𝑎 = 𝑢𝑏 = 𝑣 ) → ( ∃ 𝑐𝑃 ( 𝑎 𝑂 𝑐𝑏 𝑂 𝑐 ) ↔ ∃ 𝑐𝑃 ( 𝑢 𝑂 𝑐𝑣 𝑂 𝑐 ) ) )
16 15 cbvopabv { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( 𝑎 𝑂 𝑐𝑏 𝑂 𝑐 ) } = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ∃ 𝑐𝑃 ( 𝑢 𝑂 𝑐𝑣 𝑂 𝑐 ) }
17 9 16 eqtrdi ( 𝜑 → ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ∃ 𝑐𝑃 ( 𝑢 𝑂 𝑐𝑣 𝑂 𝑐 ) } )
18 17 breqd ( 𝜑 → ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵𝐴 { ⟨ 𝑢 , 𝑣 ⟩ ∣ ∃ 𝑐𝑃 ( 𝑢 𝑂 𝑐𝑣 𝑂 𝑐 ) } 𝐵 ) )
19 simpl ( ( 𝑢 = 𝐴𝑣 = 𝐵 ) → 𝑢 = 𝐴 )
20 19 breq1d ( ( 𝑢 = 𝐴𝑣 = 𝐵 ) → ( 𝑢 𝑂 𝑐𝐴 𝑂 𝑐 ) )
21 simpr ( ( 𝑢 = 𝐴𝑣 = 𝐵 ) → 𝑣 = 𝐵 )
22 21 breq1d ( ( 𝑢 = 𝐴𝑣 = 𝐵 ) → ( 𝑣 𝑂 𝑐𝐵 𝑂 𝑐 ) )
23 20 22 anbi12d ( ( 𝑢 = 𝐴𝑣 = 𝐵 ) → ( ( 𝑢 𝑂 𝑐𝑣 𝑂 𝑐 ) ↔ ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) )
24 23 rexbidv ( ( 𝑢 = 𝐴𝑣 = 𝐵 ) → ( ∃ 𝑐𝑃 ( 𝑢 𝑂 𝑐𝑣 𝑂 𝑐 ) ↔ ∃ 𝑐𝑃 ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) )
25 eqid { ⟨ 𝑢 , 𝑣 ⟩ ∣ ∃ 𝑐𝑃 ( 𝑢 𝑂 𝑐𝑣 𝑂 𝑐 ) } = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ∃ 𝑐𝑃 ( 𝑢 𝑂 𝑐𝑣 𝑂 𝑐 ) }
26 24 25 brabga ( ( 𝐴𝑃𝐵𝑃 ) → ( 𝐴 { ⟨ 𝑢 , 𝑣 ⟩ ∣ ∃ 𝑐𝑃 ( 𝑢 𝑂 𝑐𝑣 𝑂 𝑐 ) } 𝐵 ↔ ∃ 𝑐𝑃 ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) )
27 7 8 26 syl2anc ( 𝜑 → ( 𝐴 { ⟨ 𝑢 , 𝑣 ⟩ ∣ ∃ 𝑐𝑃 ( 𝑢 𝑂 𝑐𝑣 𝑂 𝑐 ) } 𝐵 ↔ ∃ 𝑐𝑃 ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) )
28 18 27 bitrd ( 𝜑 → ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ↔ ∃ 𝑐𝑃 ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) )