Step |
Hyp |
Ref |
Expression |
1 |
|
ishpg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ishpg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
ishpg.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
4 |
|
ishpg.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
5 |
|
ishpg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
6 |
|
ishpg.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
7 |
|
hpgbr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
hpgbr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
9 |
1 2 3 4 5 6
|
ishpg |
⊢ ( 𝜑 → ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( 𝑎 𝑂 𝑐 ∧ 𝑏 𝑂 𝑐 ) } ) |
10 |
|
simpl |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → 𝑎 = 𝑢 ) |
11 |
10
|
breq1d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( 𝑎 𝑂 𝑐 ↔ 𝑢 𝑂 𝑐 ) ) |
12 |
|
simpr |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → 𝑏 = 𝑣 ) |
13 |
12
|
breq1d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( 𝑏 𝑂 𝑐 ↔ 𝑣 𝑂 𝑐 ) ) |
14 |
11 13
|
anbi12d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( ( 𝑎 𝑂 𝑐 ∧ 𝑏 𝑂 𝑐 ) ↔ ( 𝑢 𝑂 𝑐 ∧ 𝑣 𝑂 𝑐 ) ) ) |
15 |
14
|
rexbidv |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( ∃ 𝑐 ∈ 𝑃 ( 𝑎 𝑂 𝑐 ∧ 𝑏 𝑂 𝑐 ) ↔ ∃ 𝑐 ∈ 𝑃 ( 𝑢 𝑂 𝑐 ∧ 𝑣 𝑂 𝑐 ) ) ) |
16 |
15
|
cbvopabv |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( 𝑎 𝑂 𝑐 ∧ 𝑏 𝑂 𝑐 ) } = { 〈 𝑢 , 𝑣 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( 𝑢 𝑂 𝑐 ∧ 𝑣 𝑂 𝑐 ) } |
17 |
9 16
|
eqtrdi |
⊢ ( 𝜑 → ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) = { 〈 𝑢 , 𝑣 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( 𝑢 𝑂 𝑐 ∧ 𝑣 𝑂 𝑐 ) } ) |
18 |
17
|
breqd |
⊢ ( 𝜑 → ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ↔ 𝐴 { 〈 𝑢 , 𝑣 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( 𝑢 𝑂 𝑐 ∧ 𝑣 𝑂 𝑐 ) } 𝐵 ) ) |
19 |
|
simpl |
⊢ ( ( 𝑢 = 𝐴 ∧ 𝑣 = 𝐵 ) → 𝑢 = 𝐴 ) |
20 |
19
|
breq1d |
⊢ ( ( 𝑢 = 𝐴 ∧ 𝑣 = 𝐵 ) → ( 𝑢 𝑂 𝑐 ↔ 𝐴 𝑂 𝑐 ) ) |
21 |
|
simpr |
⊢ ( ( 𝑢 = 𝐴 ∧ 𝑣 = 𝐵 ) → 𝑣 = 𝐵 ) |
22 |
21
|
breq1d |
⊢ ( ( 𝑢 = 𝐴 ∧ 𝑣 = 𝐵 ) → ( 𝑣 𝑂 𝑐 ↔ 𝐵 𝑂 𝑐 ) ) |
23 |
20 22
|
anbi12d |
⊢ ( ( 𝑢 = 𝐴 ∧ 𝑣 = 𝐵 ) → ( ( 𝑢 𝑂 𝑐 ∧ 𝑣 𝑂 𝑐 ) ↔ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) ) |
24 |
23
|
rexbidv |
⊢ ( ( 𝑢 = 𝐴 ∧ 𝑣 = 𝐵 ) → ( ∃ 𝑐 ∈ 𝑃 ( 𝑢 𝑂 𝑐 ∧ 𝑣 𝑂 𝑐 ) ↔ ∃ 𝑐 ∈ 𝑃 ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) ) |
25 |
|
eqid |
⊢ { 〈 𝑢 , 𝑣 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( 𝑢 𝑂 𝑐 ∧ 𝑣 𝑂 𝑐 ) } = { 〈 𝑢 , 𝑣 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( 𝑢 𝑂 𝑐 ∧ 𝑣 𝑂 𝑐 ) } |
26 |
24 25
|
brabga |
⊢ ( ( 𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃 ) → ( 𝐴 { 〈 𝑢 , 𝑣 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( 𝑢 𝑂 𝑐 ∧ 𝑣 𝑂 𝑐 ) } 𝐵 ↔ ∃ 𝑐 ∈ 𝑃 ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) ) |
27 |
7 8 26
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 { 〈 𝑢 , 𝑣 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( 𝑢 𝑂 𝑐 ∧ 𝑣 𝑂 𝑐 ) } 𝐵 ↔ ∃ 𝑐 ∈ 𝑃 ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) ) |
28 |
18 27
|
bitrd |
⊢ ( 𝜑 → ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ↔ ∃ 𝑐 ∈ 𝑃 ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) ) |