| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpgid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
hpgid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
hpgid.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 4 |
|
hpgid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
hpgid.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
| 6 |
|
hpgid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
hpgid.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
| 8 |
|
hpgid.1 |
⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝐷 ) |
| 9 |
3 4 5
|
tglnne0 |
⊢ ( 𝜑 → 𝐷 ≠ ∅ ) |
| 10 |
|
n0 |
⊢ ( 𝐷 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐷 ) |
| 11 |
9 10
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ 𝐷 ) |
| 12 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
| 13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐺 ∈ TarskiG ) |
| 14 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐴 ∈ 𝑃 ) |
| 15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐷 ∈ ran 𝐿 ) |
| 16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ 𝐷 ) |
| 17 |
1 3 2 13 15 16
|
tglnpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ 𝑃 ) |
| 18 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 1 ) → 𝐷 ∈ ran 𝐿 ) |
| 19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 1 ) → 𝐺 ∈ TarskiG ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 1 ) → ( ♯ ‘ 𝑃 ) = 1 ) |
| 21 |
1 2 3 19 20
|
tglndim0 |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 1 ) → ¬ 𝐷 ∈ ran 𝐿 ) |
| 22 |
18 21
|
pm2.65da |
⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝑃 ) = 1 ) |
| 23 |
1 6
|
tgldimor |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ) |
| 24 |
23
|
ord |
⊢ ( 𝜑 → ( ¬ ( ♯ ‘ 𝑃 ) = 1 → 2 ≤ ( ♯ ‘ 𝑃 ) ) ) |
| 25 |
22 24
|
mpd |
⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
| 27 |
1 12 2 13 14 17 26
|
tgbtwndiff |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑐 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝑥 ≠ 𝑐 ) ) |
| 28 |
8
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ∧ 𝑥 ≠ 𝑐 ) → ¬ 𝐴 ∈ 𝐷 ) |
| 29 |
13
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ∧ 𝑥 ≠ 𝑐 ) ∧ 𝑐 ∈ 𝐷 ) → 𝐺 ∈ TarskiG ) |
| 30 |
17
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ∧ 𝑥 ≠ 𝑐 ) ∧ 𝑐 ∈ 𝐷 ) → 𝑥 ∈ 𝑃 ) |
| 31 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) → 𝑐 ∈ 𝑃 ) |
| 32 |
31
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ∧ 𝑥 ≠ 𝑐 ) ∧ 𝑐 ∈ 𝐷 ) → 𝑐 ∈ 𝑃 ) |
| 33 |
14
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ∧ 𝑥 ≠ 𝑐 ) ∧ 𝑐 ∈ 𝐷 ) → 𝐴 ∈ 𝑃 ) |
| 34 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ∧ 𝑥 ≠ 𝑐 ) ∧ 𝑐 ∈ 𝐷 ) → 𝑥 ≠ 𝑐 ) |
| 35 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ∧ 𝑥 ≠ 𝑐 ) → 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) |
| 36 |
35
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ∧ 𝑥 ≠ 𝑐 ) ∧ 𝑐 ∈ 𝐷 ) → 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) |
| 37 |
1 2 3 29 30 32 33 34 36
|
btwnlng2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ∧ 𝑥 ≠ 𝑐 ) ∧ 𝑐 ∈ 𝐷 ) → 𝐴 ∈ ( 𝑥 𝐿 𝑐 ) ) |
| 38 |
15
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ∧ 𝑥 ≠ 𝑐 ) ∧ 𝑐 ∈ 𝐷 ) → 𝐷 ∈ ran 𝐿 ) |
| 39 |
16
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ∧ 𝑥 ≠ 𝑐 ) ∧ 𝑐 ∈ 𝐷 ) → 𝑥 ∈ 𝐷 ) |
| 40 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ∧ 𝑥 ≠ 𝑐 ) ∧ 𝑐 ∈ 𝐷 ) → 𝑐 ∈ 𝐷 ) |
| 41 |
1 2 3 29 30 32 34 34 38 39 40
|
tglinethru |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ∧ 𝑥 ≠ 𝑐 ) ∧ 𝑐 ∈ 𝐷 ) → 𝐷 = ( 𝑥 𝐿 𝑐 ) ) |
| 42 |
37 41
|
eleqtrrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ∧ 𝑥 ≠ 𝑐 ) ∧ 𝑐 ∈ 𝐷 ) → 𝐴 ∈ 𝐷 ) |
| 43 |
28 42
|
mtand |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ∧ 𝑥 ≠ 𝑐 ) → ¬ 𝑐 ∈ 𝐷 ) |
| 44 |
|
eleq1w |
⊢ ( 𝑡 = 𝑥 → ( 𝑡 ∈ ( 𝐴 𝐼 𝑐 ) ↔ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ) |
| 45 |
44
|
rspcev |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) → ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝑐 ) ) |
| 46 |
45
|
ad5ant24 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ∧ 𝑥 ≠ 𝑐 ) → ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝑐 ) ) |
| 47 |
28 43 46
|
jca31 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ) ∧ 𝑥 ≠ 𝑐 ) → ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝑐 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝑐 ) ) ) |
| 48 |
47
|
anasss |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝑥 ≠ 𝑐 ) ) → ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝑐 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝑐 ) ) ) |
| 49 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) → 𝐴 ∈ 𝑃 ) |
| 50 |
1 12 2 7 49 31
|
islnopp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) → ( 𝐴 𝑂 𝑐 ↔ ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝑐 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝑐 ) ) ) ) |
| 51 |
50
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝑥 ≠ 𝑐 ) ) → ( 𝐴 𝑂 𝑐 ↔ ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝑐 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝑐 ) ) ) ) |
| 52 |
48 51
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝑥 ≠ 𝑐 ) ) → 𝐴 𝑂 𝑐 ) |
| 53 |
52
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝑃 ) → ( ( 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝑥 ≠ 𝑐 ) → 𝐴 𝑂 𝑐 ) ) |
| 54 |
53
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ∃ 𝑐 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝑥 ≠ 𝑐 ) → ∃ 𝑐 ∈ 𝑃 𝐴 𝑂 𝑐 ) ) |
| 55 |
27 54
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑐 ∈ 𝑃 𝐴 𝑂 𝑐 ) |
| 56 |
11 55
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑐 ∈ 𝑃 𝐴 𝑂 𝑐 ) |