Metamath Proof Explorer


Theorem hpgid

Description: The half-plane relation is reflexive. Theorem 9.11 of Schwabhauser p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses hpgid.p 𝑃 = ( Base ‘ 𝐺 )
hpgid.i 𝐼 = ( Itv ‘ 𝐺 )
hpgid.l 𝐿 = ( LineG ‘ 𝐺 )
hpgid.g ( 𝜑𝐺 ∈ TarskiG )
hpgid.d ( 𝜑𝐷 ∈ ran 𝐿 )
hpgid.a ( 𝜑𝐴𝑃 )
hpgid.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
hpgid.1 ( 𝜑 → ¬ 𝐴𝐷 )
Assertion hpgid ( 𝜑𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐴 )

Proof

Step Hyp Ref Expression
1 hpgid.p 𝑃 = ( Base ‘ 𝐺 )
2 hpgid.i 𝐼 = ( Itv ‘ 𝐺 )
3 hpgid.l 𝐿 = ( LineG ‘ 𝐺 )
4 hpgid.g ( 𝜑𝐺 ∈ TarskiG )
5 hpgid.d ( 𝜑𝐷 ∈ ran 𝐿 )
6 hpgid.a ( 𝜑𝐴𝑃 )
7 hpgid.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
8 hpgid.1 ( 𝜑 → ¬ 𝐴𝐷 )
9 simprr ( ( 𝜑 ∧ ( 𝑐𝑃𝐴 𝑂 𝑐 ) ) → 𝐴 𝑂 𝑐 )
10 9 9 jca ( ( 𝜑 ∧ ( 𝑐𝑃𝐴 𝑂 𝑐 ) ) → ( 𝐴 𝑂 𝑐𝐴 𝑂 𝑐 ) )
11 1 2 3 4 5 6 7 8 hpgerlem ( 𝜑 → ∃ 𝑐𝑃 𝐴 𝑂 𝑐 )
12 10 11 reximddv ( 𝜑 → ∃ 𝑐𝑃 ( 𝐴 𝑂 𝑐𝐴 𝑂 𝑐 ) )
13 1 2 3 7 4 5 6 6 hpgbr ( 𝜑 → ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐴 ↔ ∃ 𝑐𝑃 ( 𝐴 𝑂 𝑐𝐴 𝑂 𝑐 ) ) )
14 12 13 mpbird ( 𝜑𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐴 )