Step |
Hyp |
Ref |
Expression |
1 |
|
ishpg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ishpg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
ishpg.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
4 |
|
ishpg.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
5 |
|
ishpg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
6 |
|
ishpg.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
7 |
|
hpgbr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
hpgbr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
9 |
|
hpgne1.1 |
⊢ ( 𝜑 → 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) |
10 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
11 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) → 𝐷 ∈ ran 𝐿 ) |
12 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) → 𝐺 ∈ TarskiG ) |
13 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) → 𝐴 ∈ 𝑃 ) |
14 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) → 𝑐 ∈ 𝑃 ) |
15 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) → 𝐴 𝑂 𝑐 ) |
16 |
1 10 2 4 3 11 12 13 14 15
|
oppne1 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) → ¬ 𝐴 ∈ 𝐷 ) |
17 |
1 2 3 4 5 6 7 8
|
hpgbr |
⊢ ( 𝜑 → ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ↔ ∃ 𝑐 ∈ 𝑃 ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) ) |
18 |
9 17
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑐 ∈ 𝑃 ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) |
19 |
16 18
|
r19.29a |
⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝐷 ) |