| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpgid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
hpgid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
hpgid.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 4 |
|
hpgid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
hpgid.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
| 6 |
|
hpgid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
hpgid.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
| 8 |
|
hpgcom.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 9 |
|
hpgcom.1 |
⊢ ( 𝜑 → 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) |
| 10 |
|
hpgtr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 11 |
|
hpgtr.1 |
⊢ ( 𝜑 → 𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 ) |
| 12 |
1 2 3 7 4 5 6 8
|
hpgbr |
⊢ ( 𝜑 → ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ↔ ∃ 𝑐 ∈ 𝑃 ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) ) |
| 13 |
9 12
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑐 ∈ 𝑃 ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) |
| 14 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) → 𝐴 𝑂 𝑐 ) |
| 15 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) → 𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 ) |
| 16 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) → 𝐺 ∈ TarskiG ) |
| 17 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) → 𝐷 ∈ ran 𝐿 ) |
| 18 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) → 𝐵 ∈ 𝑃 ) |
| 19 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) → 𝐶 ∈ 𝑃 ) |
| 20 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) → 𝑐 ∈ 𝑃 ) |
| 21 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) → 𝐵 𝑂 𝑐 ) |
| 22 |
1 2 3 7 16 17 18 19 20 21
|
lnopp2hpgb |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) → ( 𝐶 𝑂 𝑐 ↔ 𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 ) ) |
| 23 |
15 22
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) → 𝐶 𝑂 𝑐 ) |
| 24 |
14 23
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) → ( 𝐴 𝑂 𝑐 ∧ 𝐶 𝑂 𝑐 ) ) |
| 25 |
24
|
ex |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → ( ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) → ( 𝐴 𝑂 𝑐 ∧ 𝐶 𝑂 𝑐 ) ) ) |
| 26 |
25
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ 𝑃 ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) → ∃ 𝑐 ∈ 𝑃 ( 𝐴 𝑂 𝑐 ∧ 𝐶 𝑂 𝑐 ) ) ) |
| 27 |
13 26
|
mpd |
⊢ ( 𝜑 → ∃ 𝑐 ∈ 𝑃 ( 𝐴 𝑂 𝑐 ∧ 𝐶 𝑂 𝑐 ) ) |
| 28 |
1 2 3 7 4 5 6 10
|
hpgbr |
⊢ ( 𝜑 → ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 ↔ ∃ 𝑐 ∈ 𝑃 ( 𝐴 𝑂 𝑐 ∧ 𝐶 𝑂 𝑐 ) ) ) |
| 29 |
27 28
|
mpbird |
⊢ ( 𝜑 → 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 ) |