Metamath Proof Explorer


Theorem hphl

Description: If two points are on the same half-line with endpoint on a line, they are on the same half-plane defined by this line. (Contributed by Thierry Arnoux, 9-Aug-2020)

Ref Expression
Hypotheses hpgid.p 𝑃 = ( Base ‘ 𝐺 )
hpgid.i 𝐼 = ( Itv ‘ 𝐺 )
hpgid.l 𝐿 = ( LineG ‘ 𝐺 )
hpgid.g ( 𝜑𝐺 ∈ TarskiG )
hpgid.d ( 𝜑𝐷 ∈ ran 𝐿 )
hpgid.a ( 𝜑𝐴𝑃 )
hpgid.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
hphl.k 𝐾 = ( hlG ‘ 𝐺 )
hphl.a ( 𝜑𝐴𝐷 )
hphl.b ( 𝜑𝐵𝑃 )
hphl.c ( 𝜑𝐶𝑃 )
hphl.1 ( 𝜑 → ¬ 𝐵𝐷 )
hphl.2 ( 𝜑𝐵 ( 𝐾𝐴 ) 𝐶 )
Assertion hphl ( 𝜑𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 )

Proof

Step Hyp Ref Expression
1 hpgid.p 𝑃 = ( Base ‘ 𝐺 )
2 hpgid.i 𝐼 = ( Itv ‘ 𝐺 )
3 hpgid.l 𝐿 = ( LineG ‘ 𝐺 )
4 hpgid.g ( 𝜑𝐺 ∈ TarskiG )
5 hpgid.d ( 𝜑𝐷 ∈ ran 𝐿 )
6 hpgid.a ( 𝜑𝐴𝑃 )
7 hpgid.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
8 hphl.k 𝐾 = ( hlG ‘ 𝐺 )
9 hphl.a ( 𝜑𝐴𝐷 )
10 hphl.b ( 𝜑𝐵𝑃 )
11 hphl.c ( 𝜑𝐶𝑃 )
12 hphl.1 ( 𝜑 → ¬ 𝐵𝐷 )
13 hphl.2 ( 𝜑𝐵 ( 𝐾𝐴 ) 𝐶 )
14 1 2 8 10 11 6 4 3 13 hlln ( 𝜑𝐵 ∈ ( 𝐶 𝐿 𝐴 ) )
15 14 orcd ( 𝜑 → ( 𝐵 ∈ ( 𝐶 𝐿 𝐴 ) ∨ 𝐶 = 𝐴 ) )
16 1 3 2 4 11 6 10 15 colrot2 ( 𝜑 → ( 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) )
17 1 2 3 4 5 10 7 11 9 16 8 colhp ( 𝜑 → ( 𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 ↔ ( 𝐵 ( 𝐾𝐴 ) 𝐶 ∧ ¬ 𝐵𝐷 ) ) )
18 13 12 17 mpbir2and ( 𝜑𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 )