Step |
Hyp |
Ref |
Expression |
1 |
|
hpgid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
hpgid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
hpgid.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
4 |
|
hpgid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
hpgid.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
6 |
|
hpgid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
7 |
|
hpgid.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
8 |
|
hphl.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
9 |
|
hphl.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
10 |
|
hphl.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
11 |
|
hphl.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
12 |
|
hphl.1 |
⊢ ( 𝜑 → ¬ 𝐵 ∈ 𝐷 ) |
13 |
|
hphl.2 |
⊢ ( 𝜑 → 𝐵 ( 𝐾 ‘ 𝐴 ) 𝐶 ) |
14 |
1 2 8 10 11 6 4 3 13
|
hlln |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐶 𝐿 𝐴 ) ) |
15 |
14
|
orcd |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐶 𝐿 𝐴 ) ∨ 𝐶 = 𝐴 ) ) |
16 |
1 3 2 4 11 6 10 15
|
colrot2 |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) |
17 |
1 2 3 4 5 10 7 11 9 16 8
|
colhp |
⊢ ( 𝜑 → ( 𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 ↔ ( 𝐵 ( 𝐾 ‘ 𝐴 ) 𝐶 ∧ ¬ 𝐵 ∈ 𝐷 ) ) ) |
18 |
13 12 17
|
mpbir2and |
⊢ ( 𝜑 → 𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 ) |