Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
⊢ ( 𝑎 = 𝑋 → ( 𝑥 ≼ 𝑎 ↔ 𝑥 ≼ 𝑋 ) ) |
2 |
1
|
ralbidv |
⊢ ( 𝑎 = 𝑋 → ( ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥 ≼ 𝑎 ↔ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥 ≼ 𝑋 ) ) |
3 |
2
|
rabbidv |
⊢ ( 𝑎 = 𝑋 → { 𝑠 ∈ ∪ ( 𝑅1 “ On ) ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥 ≼ 𝑎 } = { 𝑠 ∈ ∪ ( 𝑅1 “ On ) ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥 ≼ 𝑋 } ) |
4 |
3
|
eleq1d |
⊢ ( 𝑎 = 𝑋 → ( { 𝑠 ∈ ∪ ( 𝑅1 “ On ) ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥 ≼ 𝑎 } ∈ V ↔ { 𝑠 ∈ ∪ ( 𝑅1 “ On ) ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥 ≼ 𝑋 } ∈ V ) ) |
5 |
|
vex |
⊢ 𝑎 ∈ V |
6 |
|
eqid |
⊢ ( rec ( ( 𝑑 ∈ V ↦ ( har ‘ 𝒫 ( 𝑎 × 𝑑 ) ) ) , ( har ‘ 𝒫 𝑎 ) ) ↾ ω ) = ( rec ( ( 𝑑 ∈ V ↦ ( har ‘ 𝒫 ( 𝑎 × 𝑑 ) ) ) , ( har ‘ 𝒫 𝑎 ) ) ↾ ω ) |
7 |
|
rdgeq2 |
⊢ ( 𝑒 = 𝑏 → rec ( ( 𝑓 ∈ V ↦ ∪ 𝑓 ) , 𝑒 ) = rec ( ( 𝑓 ∈ V ↦ ∪ 𝑓 ) , 𝑏 ) ) |
8 |
|
unieq |
⊢ ( 𝑓 = 𝑐 → ∪ 𝑓 = ∪ 𝑐 ) |
9 |
8
|
cbvmptv |
⊢ ( 𝑓 ∈ V ↦ ∪ 𝑓 ) = ( 𝑐 ∈ V ↦ ∪ 𝑐 ) |
10 |
|
rdgeq1 |
⊢ ( ( 𝑓 ∈ V ↦ ∪ 𝑓 ) = ( 𝑐 ∈ V ↦ ∪ 𝑐 ) → rec ( ( 𝑓 ∈ V ↦ ∪ 𝑓 ) , 𝑏 ) = rec ( ( 𝑐 ∈ V ↦ ∪ 𝑐 ) , 𝑏 ) ) |
11 |
9 10
|
ax-mp |
⊢ rec ( ( 𝑓 ∈ V ↦ ∪ 𝑓 ) , 𝑏 ) = rec ( ( 𝑐 ∈ V ↦ ∪ 𝑐 ) , 𝑏 ) |
12 |
7 11
|
eqtrdi |
⊢ ( 𝑒 = 𝑏 → rec ( ( 𝑓 ∈ V ↦ ∪ 𝑓 ) , 𝑒 ) = rec ( ( 𝑐 ∈ V ↦ ∪ 𝑐 ) , 𝑏 ) ) |
13 |
12
|
reseq1d |
⊢ ( 𝑒 = 𝑏 → ( rec ( ( 𝑓 ∈ V ↦ ∪ 𝑓 ) , 𝑒 ) ↾ ω ) = ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑐 ) , 𝑏 ) ↾ ω ) ) |
14 |
13
|
cbvmptv |
⊢ ( 𝑒 ∈ V ↦ ( rec ( ( 𝑓 ∈ V ↦ ∪ 𝑓 ) , 𝑒 ) ↾ ω ) ) = ( 𝑏 ∈ V ↦ ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑐 ) , 𝑏 ) ↾ ω ) ) |
15 |
|
eqid |
⊢ { 𝑠 ∈ ∪ ( 𝑅1 “ On ) ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥 ≼ 𝑎 } = { 𝑠 ∈ ∪ ( 𝑅1 “ On ) ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥 ≼ 𝑎 } |
16 |
|
eqid |
⊢ OrdIso ( E , ( rank “ ( ( ( 𝑒 ∈ V ↦ ( rec ( ( 𝑓 ∈ V ↦ ∪ 𝑓 ) , 𝑒 ) ↾ ω ) ) ‘ 𝑧 ) ‘ 𝑦 ) ) ) = OrdIso ( E , ( rank “ ( ( ( 𝑒 ∈ V ↦ ( rec ( ( 𝑓 ∈ V ↦ ∪ 𝑓 ) , 𝑒 ) ↾ ω ) ) ‘ 𝑧 ) ‘ 𝑦 ) ) ) |
17 |
5 6 14 15 16
|
hsmexlem6 |
⊢ { 𝑠 ∈ ∪ ( 𝑅1 “ On ) ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥 ≼ 𝑎 } ∈ V |
18 |
4 17
|
vtoclg |
⊢ ( 𝑋 ∈ 𝑉 → { 𝑠 ∈ ∪ ( 𝑅1 “ On ) ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥 ≼ 𝑋 } ∈ V ) |