Metamath Proof Explorer


Theorem hsmex2

Description: The set of hereditary size-limited sets, assuming ax-reg . (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion hsmex2 ( 𝑋𝑉 → { 𝑠 ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 } ∈ V )

Proof

Step Hyp Ref Expression
1 unir1 ( 𝑅1 “ On ) = V
2 1 rabeqi { 𝑠 ( 𝑅1 “ On ) ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 } = { 𝑠 ∈ V ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 }
3 rabab { 𝑠 ∈ V ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 } = { 𝑠 ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 }
4 2 3 eqtr2i { 𝑠 ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 } = { 𝑠 ( 𝑅1 “ On ) ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 }
5 hsmex ( 𝑋𝑉 → { 𝑠 ( 𝑅1 “ On ) ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 } ∈ V )
6 4 5 eqeltrid ( 𝑋𝑉 → { 𝑠 ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 } ∈ V )