Metamath Proof Explorer


Theorem hsmex3

Description: The set of hereditary size-limited sets, assuming ax-reg , using strict comparison (an easy corollary by separation). (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion hsmex3 ( 𝑋𝑉 → { 𝑠 ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 } ∈ V )

Proof

Step Hyp Ref Expression
1 sdomdom ( 𝑥𝑋𝑥𝑋 )
2 1 ralimi ( ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 → ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 )
3 2 ss2abi { 𝑠 ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 } ⊆ { 𝑠 ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 }
4 hsmex2 ( 𝑋𝑉 → { 𝑠 ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 } ∈ V )
5 ssexg ( ( { 𝑠 ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 } ⊆ { 𝑠 ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 } ∧ { 𝑠 ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 } ∈ V ) → { 𝑠 ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 } ∈ V )
6 3 4 5 sylancr ( 𝑋𝑉 → { 𝑠 ∣ ∀ 𝑥 ∈ ( TC ‘ { 𝑠 } ) 𝑥𝑋 } ∈ V )