Step |
Hyp |
Ref |
Expression |
1 |
|
hsmexlem.o |
⊢ 𝑂 = OrdIso ( E , 𝐴 ) |
2 |
1
|
oicl |
⊢ Ord dom 𝑂 |
3 |
|
relwdom |
⊢ Rel ≼* |
4 |
3
|
brrelex1i |
⊢ ( 𝐴 ≼* 𝐵 → 𝐴 ∈ V ) |
5 |
4
|
adantl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → 𝐴 ∈ V ) |
6 |
|
uniexg |
⊢ ( 𝐴 ∈ V → ∪ 𝐴 ∈ V ) |
7 |
|
sucexg |
⊢ ( ∪ 𝐴 ∈ V → suc ∪ 𝐴 ∈ V ) |
8 |
5 6 7
|
3syl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → suc ∪ 𝐴 ∈ V ) |
9 |
1
|
oif |
⊢ 𝑂 : dom 𝑂 ⟶ 𝐴 |
10 |
|
onsucuni |
⊢ ( 𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴 ) |
11 |
10
|
adantr |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → 𝐴 ⊆ suc ∪ 𝐴 ) |
12 |
|
fss |
⊢ ( ( 𝑂 : dom 𝑂 ⟶ 𝐴 ∧ 𝐴 ⊆ suc ∪ 𝐴 ) → 𝑂 : dom 𝑂 ⟶ suc ∪ 𝐴 ) |
13 |
9 11 12
|
sylancr |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → 𝑂 : dom 𝑂 ⟶ suc ∪ 𝐴 ) |
14 |
1
|
oismo |
⊢ ( 𝐴 ⊆ On → ( Smo 𝑂 ∧ ran 𝑂 = 𝐴 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → ( Smo 𝑂 ∧ ran 𝑂 = 𝐴 ) ) |
16 |
15
|
simpld |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → Smo 𝑂 ) |
17 |
|
ssorduni |
⊢ ( 𝐴 ⊆ On → Ord ∪ 𝐴 ) |
18 |
17
|
adantr |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → Ord ∪ 𝐴 ) |
19 |
|
ordsuc |
⊢ ( Ord ∪ 𝐴 ↔ Ord suc ∪ 𝐴 ) |
20 |
18 19
|
sylib |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → Ord suc ∪ 𝐴 ) |
21 |
|
smorndom |
⊢ ( ( 𝑂 : dom 𝑂 ⟶ suc ∪ 𝐴 ∧ Smo 𝑂 ∧ Ord suc ∪ 𝐴 ) → dom 𝑂 ⊆ suc ∪ 𝐴 ) |
22 |
13 16 20 21
|
syl3anc |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → dom 𝑂 ⊆ suc ∪ 𝐴 ) |
23 |
8 22
|
ssexd |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → dom 𝑂 ∈ V ) |
24 |
|
elong |
⊢ ( dom 𝑂 ∈ V → ( dom 𝑂 ∈ On ↔ Ord dom 𝑂 ) ) |
25 |
23 24
|
syl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → ( dom 𝑂 ∈ On ↔ Ord dom 𝑂 ) ) |
26 |
2 25
|
mpbiri |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → dom 𝑂 ∈ On ) |
27 |
|
canth2g |
⊢ ( dom 𝑂 ∈ V → dom 𝑂 ≺ 𝒫 dom 𝑂 ) |
28 |
|
sdomdom |
⊢ ( dom 𝑂 ≺ 𝒫 dom 𝑂 → dom 𝑂 ≼ 𝒫 dom 𝑂 ) |
29 |
23 27 28
|
3syl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → dom 𝑂 ≼ 𝒫 dom 𝑂 ) |
30 |
|
simpl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → 𝐴 ⊆ On ) |
31 |
|
epweon |
⊢ E We On |
32 |
|
wess |
⊢ ( 𝐴 ⊆ On → ( E We On → E We 𝐴 ) ) |
33 |
30 31 32
|
mpisyl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → E We 𝐴 ) |
34 |
|
epse |
⊢ E Se 𝐴 |
35 |
1
|
oiiso2 |
⊢ ( ( E We 𝐴 ∧ E Se 𝐴 ) → 𝑂 Isom E , E ( dom 𝑂 , ran 𝑂 ) ) |
36 |
33 34 35
|
sylancl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → 𝑂 Isom E , E ( dom 𝑂 , ran 𝑂 ) ) |
37 |
|
isof1o |
⊢ ( 𝑂 Isom E , E ( dom 𝑂 , ran 𝑂 ) → 𝑂 : dom 𝑂 –1-1-onto→ ran 𝑂 ) |
38 |
36 37
|
syl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → 𝑂 : dom 𝑂 –1-1-onto→ ran 𝑂 ) |
39 |
15
|
simprd |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → ran 𝑂 = 𝐴 ) |
40 |
39
|
f1oeq3d |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → ( 𝑂 : dom 𝑂 –1-1-onto→ ran 𝑂 ↔ 𝑂 : dom 𝑂 –1-1-onto→ 𝐴 ) ) |
41 |
38 40
|
mpbid |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → 𝑂 : dom 𝑂 –1-1-onto→ 𝐴 ) |
42 |
|
f1oen2g |
⊢ ( ( dom 𝑂 ∈ On ∧ 𝐴 ∈ V ∧ 𝑂 : dom 𝑂 –1-1-onto→ 𝐴 ) → dom 𝑂 ≈ 𝐴 ) |
43 |
26 5 41 42
|
syl3anc |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → dom 𝑂 ≈ 𝐴 ) |
44 |
|
endom |
⊢ ( dom 𝑂 ≈ 𝐴 → dom 𝑂 ≼ 𝐴 ) |
45 |
|
domwdom |
⊢ ( dom 𝑂 ≼ 𝐴 → dom 𝑂 ≼* 𝐴 ) |
46 |
43 44 45
|
3syl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → dom 𝑂 ≼* 𝐴 ) |
47 |
|
wdomtr |
⊢ ( ( dom 𝑂 ≼* 𝐴 ∧ 𝐴 ≼* 𝐵 ) → dom 𝑂 ≼* 𝐵 ) |
48 |
46 47
|
sylancom |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → dom 𝑂 ≼* 𝐵 ) |
49 |
|
wdompwdom |
⊢ ( dom 𝑂 ≼* 𝐵 → 𝒫 dom 𝑂 ≼ 𝒫 𝐵 ) |
50 |
48 49
|
syl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → 𝒫 dom 𝑂 ≼ 𝒫 𝐵 ) |
51 |
|
domtr |
⊢ ( ( dom 𝑂 ≼ 𝒫 dom 𝑂 ∧ 𝒫 dom 𝑂 ≼ 𝒫 𝐵 ) → dom 𝑂 ≼ 𝒫 𝐵 ) |
52 |
29 50 51
|
syl2anc |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → dom 𝑂 ≼ 𝒫 𝐵 ) |
53 |
|
elharval |
⊢ ( dom 𝑂 ∈ ( har ‘ 𝒫 𝐵 ) ↔ ( dom 𝑂 ∈ On ∧ dom 𝑂 ≼ 𝒫 𝐵 ) ) |
54 |
26 52 53
|
sylanbrc |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵 ) → dom 𝑂 ∈ ( har ‘ 𝒫 𝐵 ) ) |