| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hsmexlem.f |
⊢ 𝐹 = OrdIso ( E , 𝐵 ) |
| 2 |
|
hsmexlem.g |
⊢ 𝐺 = OrdIso ( E , ∪ 𝑎 ∈ 𝐴 𝐵 ) |
| 3 |
|
elpwi |
⊢ ( 𝐵 ∈ 𝒫 On → 𝐵 ⊆ On ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) → 𝐵 ⊆ On ) |
| 5 |
4
|
ralimi |
⊢ ( ∀ 𝑎 ∈ 𝐴 ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) → ∀ 𝑎 ∈ 𝐴 𝐵 ⊆ On ) |
| 6 |
|
iunss |
⊢ ( ∪ 𝑎 ∈ 𝐴 𝐵 ⊆ On ↔ ∀ 𝑎 ∈ 𝐴 𝐵 ⊆ On ) |
| 7 |
5 6
|
sylibr |
⊢ ( ∀ 𝑎 ∈ 𝐴 ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) → ∪ 𝑎 ∈ 𝐴 𝐵 ⊆ On ) |
| 8 |
7
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) → ∪ 𝑎 ∈ 𝐴 𝐵 ⊆ On ) |
| 9 |
|
xpexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ) → ( 𝐴 × 𝐶 ) ∈ V ) |
| 10 |
9
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) → ( 𝐴 × 𝐶 ) ∈ V ) |
| 11 |
|
nfv |
⊢ Ⅎ 𝑎 𝐶 ∈ On |
| 12 |
|
nfra1 |
⊢ Ⅎ 𝑎 ∀ 𝑎 ∈ 𝐴 ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) |
| 13 |
11 12
|
nfan |
⊢ Ⅎ 𝑎 ( 𝐶 ∈ On ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) |
| 14 |
|
rsp |
⊢ ( ∀ 𝑎 ∈ 𝐴 ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) → ( 𝑎 ∈ 𝐴 → ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) ) |
| 15 |
|
onelss |
⊢ ( 𝐶 ∈ On → ( dom 𝐹 ∈ 𝐶 → dom 𝐹 ⊆ 𝐶 ) ) |
| 16 |
15
|
imp |
⊢ ( ( 𝐶 ∈ On ∧ dom 𝐹 ∈ 𝐶 ) → dom 𝐹 ⊆ 𝐶 ) |
| 17 |
16
|
adantrl |
⊢ ( ( 𝐶 ∈ On ∧ ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) → dom 𝐹 ⊆ 𝐶 ) |
| 18 |
17
|
3adant3 |
⊢ ( ( 𝐶 ∈ On ∧ ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ∧ 𝑏 ∈ 𝐵 ) → dom 𝐹 ⊆ 𝐶 ) |
| 19 |
1
|
oismo |
⊢ ( 𝐵 ⊆ On → ( Smo 𝐹 ∧ ran 𝐹 = 𝐵 ) ) |
| 20 |
3 19
|
syl |
⊢ ( 𝐵 ∈ 𝒫 On → ( Smo 𝐹 ∧ ran 𝐹 = 𝐵 ) ) |
| 21 |
20
|
ad2antrl |
⊢ ( ( 𝐶 ∈ On ∧ ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) → ( Smo 𝐹 ∧ ran 𝐹 = 𝐵 ) ) |
| 22 |
21
|
simprd |
⊢ ( ( 𝐶 ∈ On ∧ ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) → ran 𝐹 = 𝐵 ) |
| 23 |
1
|
oif |
⊢ 𝐹 : dom 𝐹 ⟶ 𝐵 |
| 24 |
22 23
|
jctil |
⊢ ( ( 𝐶 ∈ On ∧ ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) → ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) ) |
| 25 |
|
dffo2 |
⊢ ( 𝐹 : dom 𝐹 –onto→ 𝐵 ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) ) |
| 26 |
24 25
|
sylibr |
⊢ ( ( 𝐶 ∈ On ∧ ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) → 𝐹 : dom 𝐹 –onto→ 𝐵 ) |
| 27 |
|
dffo3 |
⊢ ( 𝐹 : dom 𝐹 –onto→ 𝐵 ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ ∀ 𝑏 ∈ 𝐵 ∃ 𝑒 ∈ dom 𝐹 𝑏 = ( 𝐹 ‘ 𝑒 ) ) ) |
| 28 |
27
|
simprbi |
⊢ ( 𝐹 : dom 𝐹 –onto→ 𝐵 → ∀ 𝑏 ∈ 𝐵 ∃ 𝑒 ∈ dom 𝐹 𝑏 = ( 𝐹 ‘ 𝑒 ) ) |
| 29 |
|
rsp |
⊢ ( ∀ 𝑏 ∈ 𝐵 ∃ 𝑒 ∈ dom 𝐹 𝑏 = ( 𝐹 ‘ 𝑒 ) → ( 𝑏 ∈ 𝐵 → ∃ 𝑒 ∈ dom 𝐹 𝑏 = ( 𝐹 ‘ 𝑒 ) ) ) |
| 30 |
26 28 29
|
3syl |
⊢ ( ( 𝐶 ∈ On ∧ ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) → ( 𝑏 ∈ 𝐵 → ∃ 𝑒 ∈ dom 𝐹 𝑏 = ( 𝐹 ‘ 𝑒 ) ) ) |
| 31 |
30
|
3impia |
⊢ ( ( 𝐶 ∈ On ∧ ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ∧ 𝑏 ∈ 𝐵 ) → ∃ 𝑒 ∈ dom 𝐹 𝑏 = ( 𝐹 ‘ 𝑒 ) ) |
| 32 |
|
ssrexv |
⊢ ( dom 𝐹 ⊆ 𝐶 → ( ∃ 𝑒 ∈ dom 𝐹 𝑏 = ( 𝐹 ‘ 𝑒 ) → ∃ 𝑒 ∈ 𝐶 𝑏 = ( 𝐹 ‘ 𝑒 ) ) ) |
| 33 |
18 31 32
|
sylc |
⊢ ( ( 𝐶 ∈ On ∧ ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ∧ 𝑏 ∈ 𝐵 ) → ∃ 𝑒 ∈ 𝐶 𝑏 = ( 𝐹 ‘ 𝑒 ) ) |
| 34 |
33
|
3exp |
⊢ ( 𝐶 ∈ On → ( ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) → ( 𝑏 ∈ 𝐵 → ∃ 𝑒 ∈ 𝐶 𝑏 = ( 𝐹 ‘ 𝑒 ) ) ) ) |
| 35 |
14 34
|
sylan9r |
⊢ ( ( 𝐶 ∈ On ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) → ( 𝑎 ∈ 𝐴 → ( 𝑏 ∈ 𝐵 → ∃ 𝑒 ∈ 𝐶 𝑏 = ( 𝐹 ‘ 𝑒 ) ) ) ) |
| 36 |
13 35
|
reximdai |
⊢ ( ( 𝐶 ∈ On ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) → ( ∃ 𝑎 ∈ 𝐴 𝑏 ∈ 𝐵 → ∃ 𝑎 ∈ 𝐴 ∃ 𝑒 ∈ 𝐶 𝑏 = ( 𝐹 ‘ 𝑒 ) ) ) |
| 37 |
36
|
3adant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) → ( ∃ 𝑎 ∈ 𝐴 𝑏 ∈ 𝐵 → ∃ 𝑎 ∈ 𝐴 ∃ 𝑒 ∈ 𝐶 𝑏 = ( 𝐹 ‘ 𝑒 ) ) ) |
| 38 |
|
nfv |
⊢ Ⅎ 𝑑 ∃ 𝑒 ∈ 𝐶 𝑏 = ( 𝐹 ‘ 𝑒 ) |
| 39 |
|
nfcv |
⊢ Ⅎ 𝑎 𝐶 |
| 40 |
|
nfcv |
⊢ Ⅎ 𝑎 E |
| 41 |
|
nfcsb1v |
⊢ Ⅎ 𝑎 ⦋ 𝑑 / 𝑎 ⦌ 𝐵 |
| 42 |
40 41
|
nfoi |
⊢ Ⅎ 𝑎 OrdIso ( E , ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) |
| 43 |
|
nfcv |
⊢ Ⅎ 𝑎 𝑒 |
| 44 |
42 43
|
nffv |
⊢ Ⅎ 𝑎 ( OrdIso ( E , ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) ‘ 𝑒 ) |
| 45 |
44
|
nfeq2 |
⊢ Ⅎ 𝑎 𝑏 = ( OrdIso ( E , ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) ‘ 𝑒 ) |
| 46 |
39 45
|
nfrexw |
⊢ Ⅎ 𝑎 ∃ 𝑒 ∈ 𝐶 𝑏 = ( OrdIso ( E , ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) ‘ 𝑒 ) |
| 47 |
|
csbeq1a |
⊢ ( 𝑎 = 𝑑 → 𝐵 = ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) |
| 48 |
|
oieq2 |
⊢ ( 𝐵 = ⦋ 𝑑 / 𝑎 ⦌ 𝐵 → OrdIso ( E , 𝐵 ) = OrdIso ( E , ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) ) |
| 49 |
47 48
|
syl |
⊢ ( 𝑎 = 𝑑 → OrdIso ( E , 𝐵 ) = OrdIso ( E , ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) ) |
| 50 |
1 49
|
eqtrid |
⊢ ( 𝑎 = 𝑑 → 𝐹 = OrdIso ( E , ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) ) |
| 51 |
50
|
fveq1d |
⊢ ( 𝑎 = 𝑑 → ( 𝐹 ‘ 𝑒 ) = ( OrdIso ( E , ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) ‘ 𝑒 ) ) |
| 52 |
51
|
eqeq2d |
⊢ ( 𝑎 = 𝑑 → ( 𝑏 = ( 𝐹 ‘ 𝑒 ) ↔ 𝑏 = ( OrdIso ( E , ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) ‘ 𝑒 ) ) ) |
| 53 |
52
|
rexbidv |
⊢ ( 𝑎 = 𝑑 → ( ∃ 𝑒 ∈ 𝐶 𝑏 = ( 𝐹 ‘ 𝑒 ) ↔ ∃ 𝑒 ∈ 𝐶 𝑏 = ( OrdIso ( E , ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) ‘ 𝑒 ) ) ) |
| 54 |
38 46 53
|
cbvrexw |
⊢ ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑒 ∈ 𝐶 𝑏 = ( 𝐹 ‘ 𝑒 ) ↔ ∃ 𝑑 ∈ 𝐴 ∃ 𝑒 ∈ 𝐶 𝑏 = ( OrdIso ( E , ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) ‘ 𝑒 ) ) |
| 55 |
37 54
|
imbitrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) → ( ∃ 𝑎 ∈ 𝐴 𝑏 ∈ 𝐵 → ∃ 𝑑 ∈ 𝐴 ∃ 𝑒 ∈ 𝐶 𝑏 = ( OrdIso ( E , ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) ‘ 𝑒 ) ) ) |
| 56 |
|
eliun |
⊢ ( 𝑏 ∈ ∪ 𝑎 ∈ 𝐴 𝐵 ↔ ∃ 𝑎 ∈ 𝐴 𝑏 ∈ 𝐵 ) |
| 57 |
|
vex |
⊢ 𝑑 ∈ V |
| 58 |
|
vex |
⊢ 𝑒 ∈ V |
| 59 |
57 58
|
op1std |
⊢ ( 𝑐 = 〈 𝑑 , 𝑒 〉 → ( 1st ‘ 𝑐 ) = 𝑑 ) |
| 60 |
59
|
csbeq1d |
⊢ ( 𝑐 = 〈 𝑑 , 𝑒 〉 → ⦋ ( 1st ‘ 𝑐 ) / 𝑎 ⦌ 𝐵 = ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) |
| 61 |
|
oieq2 |
⊢ ( ⦋ ( 1st ‘ 𝑐 ) / 𝑎 ⦌ 𝐵 = ⦋ 𝑑 / 𝑎 ⦌ 𝐵 → OrdIso ( E , ⦋ ( 1st ‘ 𝑐 ) / 𝑎 ⦌ 𝐵 ) = OrdIso ( E , ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) ) |
| 62 |
60 61
|
syl |
⊢ ( 𝑐 = 〈 𝑑 , 𝑒 〉 → OrdIso ( E , ⦋ ( 1st ‘ 𝑐 ) / 𝑎 ⦌ 𝐵 ) = OrdIso ( E , ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) ) |
| 63 |
57 58
|
op2ndd |
⊢ ( 𝑐 = 〈 𝑑 , 𝑒 〉 → ( 2nd ‘ 𝑐 ) = 𝑒 ) |
| 64 |
62 63
|
fveq12d |
⊢ ( 𝑐 = 〈 𝑑 , 𝑒 〉 → ( OrdIso ( E , ⦋ ( 1st ‘ 𝑐 ) / 𝑎 ⦌ 𝐵 ) ‘ ( 2nd ‘ 𝑐 ) ) = ( OrdIso ( E , ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) ‘ 𝑒 ) ) |
| 65 |
64
|
eqeq2d |
⊢ ( 𝑐 = 〈 𝑑 , 𝑒 〉 → ( 𝑏 = ( OrdIso ( E , ⦋ ( 1st ‘ 𝑐 ) / 𝑎 ⦌ 𝐵 ) ‘ ( 2nd ‘ 𝑐 ) ) ↔ 𝑏 = ( OrdIso ( E , ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) ‘ 𝑒 ) ) ) |
| 66 |
65
|
rexxp |
⊢ ( ∃ 𝑐 ∈ ( 𝐴 × 𝐶 ) 𝑏 = ( OrdIso ( E , ⦋ ( 1st ‘ 𝑐 ) / 𝑎 ⦌ 𝐵 ) ‘ ( 2nd ‘ 𝑐 ) ) ↔ ∃ 𝑑 ∈ 𝐴 ∃ 𝑒 ∈ 𝐶 𝑏 = ( OrdIso ( E , ⦋ 𝑑 / 𝑎 ⦌ 𝐵 ) ‘ 𝑒 ) ) |
| 67 |
55 56 66
|
3imtr4g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) → ( 𝑏 ∈ ∪ 𝑎 ∈ 𝐴 𝐵 → ∃ 𝑐 ∈ ( 𝐴 × 𝐶 ) 𝑏 = ( OrdIso ( E , ⦋ ( 1st ‘ 𝑐 ) / 𝑎 ⦌ 𝐵 ) ‘ ( 2nd ‘ 𝑐 ) ) ) ) |
| 68 |
67
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) ∧ 𝑏 ∈ ∪ 𝑎 ∈ 𝐴 𝐵 ) → ∃ 𝑐 ∈ ( 𝐴 × 𝐶 ) 𝑏 = ( OrdIso ( E , ⦋ ( 1st ‘ 𝑐 ) / 𝑎 ⦌ 𝐵 ) ‘ ( 2nd ‘ 𝑐 ) ) ) |
| 69 |
10 68
|
wdomd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) → ∪ 𝑎 ∈ 𝐴 𝐵 ≼* ( 𝐴 × 𝐶 ) ) |
| 70 |
2
|
hsmexlem1 |
⊢ ( ( ∪ 𝑎 ∈ 𝐴 𝐵 ⊆ On ∧ ∪ 𝑎 ∈ 𝐴 𝐵 ≼* ( 𝐴 × 𝐶 ) ) → dom 𝐺 ∈ ( har ‘ 𝒫 ( 𝐴 × 𝐶 ) ) ) |
| 71 |
8 69 70
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶 ) ) → dom 𝐺 ∈ ( har ‘ 𝒫 ( 𝐴 × 𝐶 ) ) ) |