Metamath Proof Explorer


Theorem hsmexlem9

Description: Lemma for hsmex . Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015)

Ref Expression
Hypothesis hsmexlem7.h 𝐻 = ( rec ( ( 𝑧 ∈ V ↦ ( har ‘ 𝒫 ( 𝑋 × 𝑧 ) ) ) , ( har ‘ 𝒫 𝑋 ) ) ↾ ω )
Assertion hsmexlem9 ( 𝑎 ∈ ω → ( 𝐻𝑎 ) ∈ On )

Proof

Step Hyp Ref Expression
1 hsmexlem7.h 𝐻 = ( rec ( ( 𝑧 ∈ V ↦ ( har ‘ 𝒫 ( 𝑋 × 𝑧 ) ) ) , ( har ‘ 𝒫 𝑋 ) ) ↾ ω )
2 nn0suc ( 𝑎 ∈ ω → ( 𝑎 = ∅ ∨ ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 ) )
3 fveq2 ( 𝑎 = ∅ → ( 𝐻𝑎 ) = ( 𝐻 ‘ ∅ ) )
4 1 hsmexlem7 ( 𝐻 ‘ ∅ ) = ( har ‘ 𝒫 𝑋 )
5 harcl ( har ‘ 𝒫 𝑋 ) ∈ On
6 4 5 eqeltri ( 𝐻 ‘ ∅ ) ∈ On
7 3 6 eqeltrdi ( 𝑎 = ∅ → ( 𝐻𝑎 ) ∈ On )
8 1 hsmexlem8 ( 𝑏 ∈ ω → ( 𝐻 ‘ suc 𝑏 ) = ( har ‘ 𝒫 ( 𝑋 × ( 𝐻𝑏 ) ) ) )
9 harcl ( har ‘ 𝒫 ( 𝑋 × ( 𝐻𝑏 ) ) ) ∈ On
10 8 9 eqeltrdi ( 𝑏 ∈ ω → ( 𝐻 ‘ suc 𝑏 ) ∈ On )
11 fveq2 ( 𝑎 = suc 𝑏 → ( 𝐻𝑎 ) = ( 𝐻 ‘ suc 𝑏 ) )
12 11 eleq1d ( 𝑎 = suc 𝑏 → ( ( 𝐻𝑎 ) ∈ On ↔ ( 𝐻 ‘ suc 𝑏 ) ∈ On ) )
13 10 12 syl5ibrcom ( 𝑏 ∈ ω → ( 𝑎 = suc 𝑏 → ( 𝐻𝑎 ) ∈ On ) )
14 13 rexlimiv ( ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 → ( 𝐻𝑎 ) ∈ On )
15 7 14 jaoi ( ( 𝑎 = ∅ ∨ ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 ) → ( 𝐻𝑎 ) ∈ On )
16 2 15 syl ( 𝑎 ∈ ω → ( 𝐻𝑎 ) ∈ On )