Step |
Hyp |
Ref |
Expression |
1 |
|
hsmexlem7.h |
⊢ 𝐻 = ( rec ( ( 𝑧 ∈ V ↦ ( har ‘ 𝒫 ( 𝑋 × 𝑧 ) ) ) , ( har ‘ 𝒫 𝑋 ) ) ↾ ω ) |
2 |
|
nn0suc |
⊢ ( 𝑎 ∈ ω → ( 𝑎 = ∅ ∨ ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑎 = ∅ → ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ ∅ ) ) |
4 |
1
|
hsmexlem7 |
⊢ ( 𝐻 ‘ ∅ ) = ( har ‘ 𝒫 𝑋 ) |
5 |
|
harcl |
⊢ ( har ‘ 𝒫 𝑋 ) ∈ On |
6 |
4 5
|
eqeltri |
⊢ ( 𝐻 ‘ ∅ ) ∈ On |
7 |
3 6
|
eqeltrdi |
⊢ ( 𝑎 = ∅ → ( 𝐻 ‘ 𝑎 ) ∈ On ) |
8 |
1
|
hsmexlem8 |
⊢ ( 𝑏 ∈ ω → ( 𝐻 ‘ suc 𝑏 ) = ( har ‘ 𝒫 ( 𝑋 × ( 𝐻 ‘ 𝑏 ) ) ) ) |
9 |
|
harcl |
⊢ ( har ‘ 𝒫 ( 𝑋 × ( 𝐻 ‘ 𝑏 ) ) ) ∈ On |
10 |
8 9
|
eqeltrdi |
⊢ ( 𝑏 ∈ ω → ( 𝐻 ‘ suc 𝑏 ) ∈ On ) |
11 |
|
fveq2 |
⊢ ( 𝑎 = suc 𝑏 → ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ suc 𝑏 ) ) |
12 |
11
|
eleq1d |
⊢ ( 𝑎 = suc 𝑏 → ( ( 𝐻 ‘ 𝑎 ) ∈ On ↔ ( 𝐻 ‘ suc 𝑏 ) ∈ On ) ) |
13 |
10 12
|
syl5ibrcom |
⊢ ( 𝑏 ∈ ω → ( 𝑎 = suc 𝑏 → ( 𝐻 ‘ 𝑎 ) ∈ On ) ) |
14 |
13
|
rexlimiv |
⊢ ( ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 → ( 𝐻 ‘ 𝑎 ) ∈ On ) |
15 |
7 14
|
jaoi |
⊢ ( ( 𝑎 = ∅ ∨ ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 ) → ( 𝐻 ‘ 𝑎 ) ∈ On ) |
16 |
2 15
|
syl |
⊢ ( 𝑎 ∈ ω → ( 𝐻 ‘ 𝑎 ) ∈ On ) |