| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
| 2 |
|
snssi |
⊢ ( 0ℎ ∈ ℋ → { 0ℎ } ⊆ ℋ ) |
| 3 |
1 2
|
ax-mp |
⊢ { 0ℎ } ⊆ ℋ |
| 4 |
1
|
elexi |
⊢ 0ℎ ∈ V |
| 5 |
4
|
snid |
⊢ 0ℎ ∈ { 0ℎ } |
| 6 |
3 5
|
pm3.2i |
⊢ ( { 0ℎ } ⊆ ℋ ∧ 0ℎ ∈ { 0ℎ } ) |
| 7 |
|
velsn |
⊢ ( 𝑥 ∈ { 0ℎ } ↔ 𝑥 = 0ℎ ) |
| 8 |
|
velsn |
⊢ ( 𝑦 ∈ { 0ℎ } ↔ 𝑦 = 0ℎ ) |
| 9 |
|
oveq12 |
⊢ ( ( 𝑥 = 0ℎ ∧ 𝑦 = 0ℎ ) → ( 𝑥 +ℎ 𝑦 ) = ( 0ℎ +ℎ 0ℎ ) ) |
| 10 |
1
|
hvaddlidi |
⊢ ( 0ℎ +ℎ 0ℎ ) = 0ℎ |
| 11 |
9 10
|
eqtrdi |
⊢ ( ( 𝑥 = 0ℎ ∧ 𝑦 = 0ℎ ) → ( 𝑥 +ℎ 𝑦 ) = 0ℎ ) |
| 12 |
|
ovex |
⊢ ( 𝑥 +ℎ 𝑦 ) ∈ V |
| 13 |
12
|
elsn |
⊢ ( ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } ↔ ( 𝑥 +ℎ 𝑦 ) = 0ℎ ) |
| 14 |
11 13
|
sylibr |
⊢ ( ( 𝑥 = 0ℎ ∧ 𝑦 = 0ℎ ) → ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } ) |
| 15 |
7 8 14
|
syl2anb |
⊢ ( ( 𝑥 ∈ { 0ℎ } ∧ 𝑦 ∈ { 0ℎ } ) → ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } ) |
| 16 |
15
|
rgen2 |
⊢ ∀ 𝑥 ∈ { 0ℎ } ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } |
| 17 |
|
oveq2 |
⊢ ( 𝑦 = 0ℎ → ( 𝑥 ·ℎ 𝑦 ) = ( 𝑥 ·ℎ 0ℎ ) ) |
| 18 |
|
hvmul0 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ·ℎ 0ℎ ) = 0ℎ ) |
| 19 |
17 18
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ ) → ( 𝑥 ·ℎ 𝑦 ) = 0ℎ ) |
| 20 |
|
ovex |
⊢ ( 𝑥 ·ℎ 𝑦 ) ∈ V |
| 21 |
20
|
elsn |
⊢ ( ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } ↔ ( 𝑥 ·ℎ 𝑦 ) = 0ℎ ) |
| 22 |
19 21
|
sylibr |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } ) |
| 23 |
8 22
|
sylan2b |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ { 0ℎ } ) → ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } ) |
| 24 |
23
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } |
| 25 |
16 24
|
pm3.2i |
⊢ ( ∀ 𝑥 ∈ { 0ℎ } ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } ) |
| 26 |
|
issh2 |
⊢ ( { 0ℎ } ∈ Sℋ ↔ ( ( { 0ℎ } ⊆ ℋ ∧ 0ℎ ∈ { 0ℎ } ) ∧ ( ∀ 𝑥 ∈ { 0ℎ } ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } ) ) ) |
| 27 |
6 25 26
|
mpbir2an |
⊢ { 0ℎ } ∈ Sℋ |
| 28 |
4
|
fconst2 |
⊢ ( 𝑓 : ℕ ⟶ { 0ℎ } ↔ 𝑓 = ( ℕ × { 0ℎ } ) ) |
| 29 |
|
hlim0 |
⊢ ( ℕ × { 0ℎ } ) ⇝𝑣 0ℎ |
| 30 |
|
breq1 |
⊢ ( 𝑓 = ( ℕ × { 0ℎ } ) → ( 𝑓 ⇝𝑣 0ℎ ↔ ( ℕ × { 0ℎ } ) ⇝𝑣 0ℎ ) ) |
| 31 |
29 30
|
mpbiri |
⊢ ( 𝑓 = ( ℕ × { 0ℎ } ) → 𝑓 ⇝𝑣 0ℎ ) |
| 32 |
28 31
|
sylbi |
⊢ ( 𝑓 : ℕ ⟶ { 0ℎ } → 𝑓 ⇝𝑣 0ℎ ) |
| 33 |
|
hlimuni |
⊢ ( ( 𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥 ) → 0ℎ = 𝑥 ) |
| 34 |
33
|
eleq1d |
⊢ ( ( 𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 0ℎ ∈ { 0ℎ } ↔ 𝑥 ∈ { 0ℎ } ) ) |
| 35 |
32 34
|
sylan |
⊢ ( ( 𝑓 : ℕ ⟶ { 0ℎ } ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 0ℎ ∈ { 0ℎ } ↔ 𝑥 ∈ { 0ℎ } ) ) |
| 36 |
5 35
|
mpbii |
⊢ ( ( 𝑓 : ℕ ⟶ { 0ℎ } ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ { 0ℎ } ) |
| 37 |
36
|
gen2 |
⊢ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ { 0ℎ } ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ { 0ℎ } ) |
| 38 |
|
isch2 |
⊢ ( { 0ℎ } ∈ Cℋ ↔ ( { 0ℎ } ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ { 0ℎ } ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ { 0ℎ } ) ) ) |
| 39 |
27 37 38
|
mpbir2an |
⊢ { 0ℎ } ∈ Cℋ |