Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
2 |
|
snssi |
⊢ ( 0ℎ ∈ ℋ → { 0ℎ } ⊆ ℋ ) |
3 |
1 2
|
ax-mp |
⊢ { 0ℎ } ⊆ ℋ |
4 |
1
|
elexi |
⊢ 0ℎ ∈ V |
5 |
4
|
snid |
⊢ 0ℎ ∈ { 0ℎ } |
6 |
3 5
|
pm3.2i |
⊢ ( { 0ℎ } ⊆ ℋ ∧ 0ℎ ∈ { 0ℎ } ) |
7 |
|
velsn |
⊢ ( 𝑥 ∈ { 0ℎ } ↔ 𝑥 = 0ℎ ) |
8 |
|
velsn |
⊢ ( 𝑦 ∈ { 0ℎ } ↔ 𝑦 = 0ℎ ) |
9 |
|
oveq12 |
⊢ ( ( 𝑥 = 0ℎ ∧ 𝑦 = 0ℎ ) → ( 𝑥 +ℎ 𝑦 ) = ( 0ℎ +ℎ 0ℎ ) ) |
10 |
1
|
hvaddid2i |
⊢ ( 0ℎ +ℎ 0ℎ ) = 0ℎ |
11 |
9 10
|
eqtrdi |
⊢ ( ( 𝑥 = 0ℎ ∧ 𝑦 = 0ℎ ) → ( 𝑥 +ℎ 𝑦 ) = 0ℎ ) |
12 |
|
ovex |
⊢ ( 𝑥 +ℎ 𝑦 ) ∈ V |
13 |
12
|
elsn |
⊢ ( ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } ↔ ( 𝑥 +ℎ 𝑦 ) = 0ℎ ) |
14 |
11 13
|
sylibr |
⊢ ( ( 𝑥 = 0ℎ ∧ 𝑦 = 0ℎ ) → ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } ) |
15 |
7 8 14
|
syl2anb |
⊢ ( ( 𝑥 ∈ { 0ℎ } ∧ 𝑦 ∈ { 0ℎ } ) → ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } ) |
16 |
15
|
rgen2 |
⊢ ∀ 𝑥 ∈ { 0ℎ } ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } |
17 |
|
oveq2 |
⊢ ( 𝑦 = 0ℎ → ( 𝑥 ·ℎ 𝑦 ) = ( 𝑥 ·ℎ 0ℎ ) ) |
18 |
|
hvmul0 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ·ℎ 0ℎ ) = 0ℎ ) |
19 |
17 18
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ ) → ( 𝑥 ·ℎ 𝑦 ) = 0ℎ ) |
20 |
|
ovex |
⊢ ( 𝑥 ·ℎ 𝑦 ) ∈ V |
21 |
20
|
elsn |
⊢ ( ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } ↔ ( 𝑥 ·ℎ 𝑦 ) = 0ℎ ) |
22 |
19 21
|
sylibr |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } ) |
23 |
8 22
|
sylan2b |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ { 0ℎ } ) → ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } ) |
24 |
23
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } |
25 |
16 24
|
pm3.2i |
⊢ ( ∀ 𝑥 ∈ { 0ℎ } ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } ) |
26 |
|
issh2 |
⊢ ( { 0ℎ } ∈ Sℋ ↔ ( ( { 0ℎ } ⊆ ℋ ∧ 0ℎ ∈ { 0ℎ } ) ∧ ( ∀ 𝑥 ∈ { 0ℎ } ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } ) ) ) |
27 |
6 25 26
|
mpbir2an |
⊢ { 0ℎ } ∈ Sℋ |
28 |
4
|
fconst2 |
⊢ ( 𝑓 : ℕ ⟶ { 0ℎ } ↔ 𝑓 = ( ℕ × { 0ℎ } ) ) |
29 |
|
hlim0 |
⊢ ( ℕ × { 0ℎ } ) ⇝𝑣 0ℎ |
30 |
|
breq1 |
⊢ ( 𝑓 = ( ℕ × { 0ℎ } ) → ( 𝑓 ⇝𝑣 0ℎ ↔ ( ℕ × { 0ℎ } ) ⇝𝑣 0ℎ ) ) |
31 |
29 30
|
mpbiri |
⊢ ( 𝑓 = ( ℕ × { 0ℎ } ) → 𝑓 ⇝𝑣 0ℎ ) |
32 |
28 31
|
sylbi |
⊢ ( 𝑓 : ℕ ⟶ { 0ℎ } → 𝑓 ⇝𝑣 0ℎ ) |
33 |
|
hlimuni |
⊢ ( ( 𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥 ) → 0ℎ = 𝑥 ) |
34 |
33
|
eleq1d |
⊢ ( ( 𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 0ℎ ∈ { 0ℎ } ↔ 𝑥 ∈ { 0ℎ } ) ) |
35 |
32 34
|
sylan |
⊢ ( ( 𝑓 : ℕ ⟶ { 0ℎ } ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 0ℎ ∈ { 0ℎ } ↔ 𝑥 ∈ { 0ℎ } ) ) |
36 |
5 35
|
mpbii |
⊢ ( ( 𝑓 : ℕ ⟶ { 0ℎ } ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ { 0ℎ } ) |
37 |
36
|
gen2 |
⊢ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ { 0ℎ } ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ { 0ℎ } ) |
38 |
|
isch2 |
⊢ ( { 0ℎ } ∈ Cℋ ↔ ( { 0ℎ } ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ { 0ℎ } ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ { 0ℎ } ) ) ) |
39 |
27 37 38
|
mpbir2an |
⊢ { 0ℎ } ∈ Cℋ |