| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hstr.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | hstr.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 |  | dfral2 | ⊢ ( ∀ 𝑓  ∈  CHStates ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1 )  ↔  ¬  ∃ 𝑓  ∈  CHStates ¬  ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1 ) ) | 
						
							| 4 | 1 2 | strlem1 | ⊢ ( ¬  𝐴  ⊆  𝐵  →  ∃ 𝑢  ∈  ( 𝐴  ∖  𝐵 ) ( normℎ ‘ 𝑢 )  =  1 ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  =  ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) | 
						
							| 6 |  | biid | ⊢ ( ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ 𝑢 )  =  1 )  ↔  ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ 𝑢 )  =  1 ) ) | 
						
							| 7 | 5 6 1 2 | hstrlem3 | ⊢ ( ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  ∈  CHStates ) | 
						
							| 8 | 5 6 1 2 | hstrlem6 | ⊢ ( ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ¬  ( ( normℎ ‘ ( ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ‘ 𝐵 ) )  =  1 ) ) | 
						
							| 9 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  →  ( 𝑓 ‘ 𝐴 )  =  ( ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ‘ 𝐴 ) ) | 
						
							| 10 | 9 | fveqeq2d | ⊢ ( 𝑓  =  ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  →  ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  ↔  ( normℎ ‘ ( ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ‘ 𝐴 ) )  =  1 ) ) | 
						
							| 11 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  →  ( 𝑓 ‘ 𝐵 )  =  ( ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ‘ 𝐵 ) ) | 
						
							| 12 | 11 | fveqeq2d | ⊢ ( 𝑓  =  ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  →  ( ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1  ↔  ( normℎ ‘ ( ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ‘ 𝐵 ) )  =  1 ) ) | 
						
							| 13 | 10 12 | imbi12d | ⊢ ( 𝑓  =  ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  →  ( ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1 )  ↔  ( ( normℎ ‘ ( ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ‘ 𝐵 ) )  =  1 ) ) ) | 
						
							| 14 | 13 | notbid | ⊢ ( 𝑓  =  ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  →  ( ¬  ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1 )  ↔  ¬  ( ( normℎ ‘ ( ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ‘ 𝐵 ) )  =  1 ) ) ) | 
						
							| 15 | 14 | rspcev | ⊢ ( ( ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  ∈  CHStates  ∧  ¬  ( ( normℎ ‘ ( ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ‘ 𝐵 ) )  =  1 ) )  →  ∃ 𝑓  ∈  CHStates ¬  ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1 ) ) | 
						
							| 16 | 7 8 15 | syl2anc | ⊢ ( ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ∃ 𝑓  ∈  CHStates ¬  ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1 ) ) | 
						
							| 17 | 16 | rexlimiva | ⊢ ( ∃ 𝑢  ∈  ( 𝐴  ∖  𝐵 ) ( normℎ ‘ 𝑢 )  =  1  →  ∃ 𝑓  ∈  CHStates ¬  ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1 ) ) | 
						
							| 18 | 4 17 | syl | ⊢ ( ¬  𝐴  ⊆  𝐵  →  ∃ 𝑓  ∈  CHStates ¬  ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1 ) ) | 
						
							| 19 | 18 | con1i | ⊢ ( ¬  ∃ 𝑓  ∈  CHStates ¬  ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1 )  →  𝐴  ⊆  𝐵 ) | 
						
							| 20 | 3 19 | sylbi | ⊢ ( ∀ 𝑓  ∈  CHStates ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1 )  →  𝐴  ⊆  𝐵 ) |