| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hstrlem3.1 |
⊢ 𝑆 = ( 𝑥 ∈ Cℋ ↦ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) |
| 2 |
|
hstrlem3.2 |
⊢ ( 𝜑 ↔ ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( normℎ ‘ 𝑢 ) = 1 ) ) |
| 3 |
|
hstrlem3.3 |
⊢ 𝐴 ∈ Cℋ |
| 4 |
|
hstrlem3.4 |
⊢ 𝐵 ∈ Cℋ |
| 5 |
1
|
hstrlem2 |
⊢ ( 𝐴 ∈ Cℋ → ( 𝑆 ‘ 𝐴 ) = ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) |
| 6 |
3 5
|
ax-mp |
⊢ ( 𝑆 ‘ 𝐴 ) = ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) |
| 7 |
6
|
fveq2i |
⊢ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) |
| 8 |
|
eldifi |
⊢ ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑢 ∈ 𝐴 ) |
| 9 |
|
pjid |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝑢 ∈ 𝐴 ) → ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) = 𝑢 ) |
| 10 |
3 9
|
mpan |
⊢ ( 𝑢 ∈ 𝐴 → ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) = 𝑢 ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝑢 ∈ 𝐴 → ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = ( normℎ ‘ 𝑢 ) ) |
| 12 |
|
eqeq2 |
⊢ ( ( normℎ ‘ 𝑢 ) = 1 → ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = ( normℎ ‘ 𝑢 ) ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = 1 ) ) |
| 13 |
11 12
|
imbitrid |
⊢ ( ( normℎ ‘ 𝑢 ) = 1 → ( 𝑢 ∈ 𝐴 → ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = 1 ) ) |
| 14 |
8 13
|
mpan9 |
⊢ ( ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = 1 ) |
| 15 |
2 14
|
sylbi |
⊢ ( 𝜑 → ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = 1 ) |
| 16 |
7 15
|
eqtrid |
⊢ ( 𝜑 → ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 ) |