Step |
Hyp |
Ref |
Expression |
1 |
|
uniss |
⊢ ( 𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵 ) |
2 |
|
sspwuni |
⊢ ( 𝐴 ⊆ 𝒫 ℋ ↔ ∪ 𝐴 ⊆ ℋ ) |
3 |
|
sspwuni |
⊢ ( 𝐵 ⊆ 𝒫 ℋ ↔ ∪ 𝐵 ⊆ ℋ ) |
4 |
|
occon2 |
⊢ ( ( ∪ 𝐴 ⊆ ℋ ∧ ∪ 𝐵 ⊆ ℋ ) → ( ∪ 𝐴 ⊆ ∪ 𝐵 → ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐵 ) ) ) ) |
5 |
2 3 4
|
syl2anb |
⊢ ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( ∪ 𝐴 ⊆ ∪ 𝐵 → ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐵 ) ) ) ) |
6 |
1 5
|
syl5 |
⊢ ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( 𝐴 ⊆ 𝐵 → ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐵 ) ) ) ) |
7 |
|
hsupval |
⊢ ( 𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘ 𝐴 ) = ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐴 ) ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( ∨ℋ ‘ 𝐴 ) = ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐴 ) ) ) |
9 |
|
hsupval |
⊢ ( 𝐵 ⊆ 𝒫 ℋ → ( ∨ℋ ‘ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐵 ) ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( ∨ℋ ‘ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐵 ) ) ) |
11 |
8 10
|
sseq12d |
⊢ ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( ( ∨ℋ ‘ 𝐴 ) ⊆ ( ∨ℋ ‘ 𝐵 ) ↔ ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐵 ) ) ) ) |
12 |
6 11
|
sylibrd |
⊢ ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( 𝐴 ⊆ 𝐵 → ( ∨ℋ ‘ 𝐴 ) ⊆ ( ∨ℋ ‘ 𝐵 ) ) ) |