Metamath Proof Explorer


Theorem hsupss

Description: Subset relation for supremum of Hilbert space subsets. (Contributed by NM, 24-Nov-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hsupss ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( 𝐴𝐵 → ( 𝐴 ) ⊆ ( 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 uniss ( 𝐴𝐵 𝐴 𝐵 )
2 sspwuni ( 𝐴 ⊆ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ )
3 sspwuni ( 𝐵 ⊆ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ )
4 occon2 ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 𝐵 → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )
5 2 3 4 syl2anb ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( 𝐴 𝐵 → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )
6 1 5 syl5 ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( 𝐴𝐵 → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )
7 hsupval ( 𝐴 ⊆ 𝒫 ℋ → ( 𝐴 ) = ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )
8 7 adantr ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( 𝐴 ) = ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )
9 hsupval ( 𝐵 ⊆ 𝒫 ℋ → ( 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) )
10 9 adantl ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) )
11 8 10 sseq12d ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( ( 𝐴 ) ⊆ ( 𝐵 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )
12 6 11 sylibrd ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( 𝐴𝐵 → ( 𝐴 ) ⊆ ( 𝐵 ) ) )