| Step |
Hyp |
Ref |
Expression |
| 1 |
|
htalem.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
htalem.2 |
⊢ 𝐵 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) |
| 3 |
|
simpl |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝐴 ≠ ∅ ) → 𝑅 We 𝐴 ) |
| 4 |
1
|
a1i |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ V ) |
| 5 |
|
ssidd |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ 𝐴 ) |
| 6 |
|
simpr |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
| 7 |
|
wereu |
⊢ ( ( 𝑅 We 𝐴 ∧ ( 𝐴 ∈ V ∧ 𝐴 ⊆ 𝐴 ∧ 𝐴 ≠ ∅ ) ) → ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) |
| 8 |
3 4 5 6 7
|
syl13anc |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝐴 ≠ ∅ ) → ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) |
| 9 |
|
riotacl |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ∈ 𝐴 ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝐴 ≠ ∅ ) → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ∈ 𝐴 ) |
| 11 |
2 10
|
eqeltrid |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝐴 ≠ ∅ ) → 𝐵 ∈ 𝐴 ) |