| Step |
Hyp |
Ref |
Expression |
| 1 |
|
htth.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
htth.2 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
| 3 |
|
htth.3 |
⊢ 𝐿 = ( 𝑈 LnOp 𝑈 ) |
| 4 |
|
htth.4 |
⊢ 𝐵 = ( 𝑈 BLnOp 𝑈 ) |
| 5 |
|
htthlem.5 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
| 6 |
|
htthlem.6 |
⊢ 𝑈 ∈ CHilOLD |
| 7 |
|
htthlem.7 |
⊢ 𝑊 = 〈 〈 + , · 〉 , abs 〉 |
| 8 |
|
htthlem.8 |
⊢ ( 𝜑 → 𝑇 ∈ 𝐿 ) |
| 9 |
|
htthlem.9 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) |
| 10 |
|
htthlem.10 |
⊢ 𝐹 = ( 𝑧 ∈ 𝑋 ↦ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 11 |
|
htthlem.11 |
⊢ 𝐾 = ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) |
| 12 |
6
|
hlnvi |
⊢ 𝑈 ∈ NrmCVec |
| 13 |
1 1 3
|
lnof |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ 𝑋 ) |
| 14 |
12 12 13
|
mp3an12 |
⊢ ( 𝑇 ∈ 𝐿 → 𝑇 : 𝑋 ⟶ 𝑋 ) |
| 15 |
8 14
|
syl |
⊢ ( 𝜑 → 𝑇 : 𝑋 ⟶ 𝑋 ) |
| 16 |
15
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) |
| 17 |
1 5
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 18 |
12 16 17
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 19 |
15
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑧 ) ∈ 𝑋 ) |
| 20 |
|
hlph |
⊢ ( 𝑈 ∈ CHilOLD → 𝑈 ∈ CPreHilOLD ) |
| 21 |
6 20
|
ax-mp |
⊢ 𝑈 ∈ CPreHilOLD |
| 22 |
|
eqid |
⊢ ( 𝑈 BLnOp 𝑊 ) = ( 𝑈 BLnOp 𝑊 ) |
| 23 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) |
| 24 |
1 2 21 7 22 23
|
ipblnfi |
⊢ ( ( 𝑇 ‘ 𝑧 ) ∈ 𝑋 → ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) ∈ ( 𝑈 BLnOp 𝑊 ) ) |
| 25 |
19 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) ∈ ( 𝑈 BLnOp 𝑊 ) ) |
| 26 |
25 10
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 𝑈 BLnOp 𝑊 ) ) |
| 27 |
26
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Fun 𝐹 ) |
| 29 |
|
id |
⊢ ( 𝑤 ∈ 𝐾 → 𝑤 ∈ 𝐾 ) |
| 30 |
29 11
|
eleqtrdi |
⊢ ( 𝑤 ∈ 𝐾 → 𝑤 ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) |
| 31 |
|
fvelima |
⊢ ( ( Fun 𝐹 ∧ 𝑤 ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) → ∃ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ( 𝐹 ‘ 𝑦 ) = 𝑤 ) |
| 32 |
28 30 31
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝐾 ) → ∃ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ( 𝐹 ‘ 𝑦 ) = 𝑤 ) |
| 33 |
32
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑤 ∈ 𝐾 → ∃ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ( 𝐹 ‘ 𝑦 ) = 𝑤 ) ) |
| 34 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑁 ‘ 𝑧 ) = ( 𝑁 ‘ 𝑦 ) ) |
| 35 |
34
|
breq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑁 ‘ 𝑧 ) ≤ 1 ↔ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) |
| 36 |
35
|
elrab |
⊢ ( 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ↔ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) |
| 37 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑦 ) ) |
| 38 |
37
|
oveq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) = ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) |
| 39 |
38
|
mpteq2dv |
⊢ ( 𝑧 = 𝑦 → ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 40 |
39 10 1
|
mptfvmpt |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 41 |
40
|
fveq1d |
⊢ ( 𝑦 ∈ 𝑋 → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) ‘ 𝑥 ) ) |
| 42 |
|
oveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) |
| 43 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) |
| 44 |
|
ovex |
⊢ ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ∈ V |
| 45 |
42 43 44
|
fvmpt |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) ‘ 𝑥 ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) |
| 46 |
41 45
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) |
| 47 |
46
|
ad2ant2lr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) |
| 48 |
|
rsp2 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ) |
| 49 |
9 48
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ) |
| 50 |
49
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) |
| 51 |
50
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) |
| 52 |
47 51
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) |
| 53 |
52
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) = ( abs ‘ ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ) |
| 54 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) → 𝑦 ∈ 𝑋 ) |
| 55 |
1 2
|
dipcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ∈ ℂ ) |
| 56 |
12 55
|
mp3an1 |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ∈ ℂ ) |
| 57 |
16 54 56
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ∈ ℂ ) |
| 58 |
57
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ∈ ℝ ) |
| 59 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 60 |
1 5
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑦 ) ∈ ℝ ) |
| 61 |
12 60
|
mpan |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝑁 ‘ 𝑦 ) ∈ ℝ ) |
| 62 |
61
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( 𝑁 ‘ 𝑦 ) ∈ ℝ ) |
| 63 |
59 62
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ∈ ℝ ) |
| 64 |
1 5 2 21
|
sii |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ≤ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ) |
| 65 |
16 54 64
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ≤ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ) |
| 66 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → 1 ∈ ℝ ) |
| 67 |
1 5
|
nvge0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 68 |
12 16 67
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 69 |
18 68
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 70 |
69
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 71 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( 𝑁 ‘ 𝑦 ) ≤ 1 ) |
| 72 |
|
lemul2a |
⊢ ( ( ( ( 𝑁 ‘ 𝑦 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ≤ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · 1 ) ) |
| 73 |
62 66 70 71 72
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ≤ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · 1 ) ) |
| 74 |
59
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℂ ) |
| 75 |
74
|
mulridd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · 1 ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 76 |
73 75
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 77 |
58 63 59 65 76
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 78 |
53 77
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 79 |
36 78
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 80 |
|
fveq1 |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑤 ‘ 𝑥 ) ) |
| 81 |
80
|
fveq2d |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) = ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ) |
| 82 |
81
|
breq1d |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 83 |
79 82
|
syl5ibcom |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) → ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 84 |
83
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 85 |
33 84
|
syld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑤 ∈ 𝐾 → ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 86 |
85
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 87 |
|
brralrspcev |
⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ) |
| 88 |
18 86 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ) |
| 89 |
88
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ) |
| 90 |
|
imassrn |
⊢ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ⊆ ran 𝐹 |
| 91 |
11 90
|
eqsstri |
⊢ 𝐾 ⊆ ran 𝐹 |
| 92 |
26
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑈 BLnOp 𝑊 ) ) |
| 93 |
91 92
|
sstrid |
⊢ ( 𝜑 → 𝐾 ⊆ ( 𝑈 BLnOp 𝑊 ) ) |
| 94 |
|
hlobn |
⊢ ( 𝑈 ∈ CHilOLD → 𝑈 ∈ CBan ) |
| 95 |
6 94
|
ax-mp |
⊢ 𝑈 ∈ CBan |
| 96 |
7
|
cnnv |
⊢ 𝑊 ∈ NrmCVec |
| 97 |
7
|
cnnvnm |
⊢ abs = ( normCV ‘ 𝑊 ) |
| 98 |
|
eqid |
⊢ ( 𝑈 normOpOLD 𝑊 ) = ( 𝑈 normOpOLD 𝑊 ) |
| 99 |
1 97 98
|
ubth |
⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝐾 ⊆ ( 𝑈 BLnOp 𝑊 ) ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
| 100 |
95 96 99
|
mp3an12 |
⊢ ( 𝐾 ⊆ ( 𝑈 BLnOp 𝑊 ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
| 101 |
93 100
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
| 102 |
89 101
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 ) |
| 103 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) |
| 104 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑁 ‘ 𝑧 ) = ( 𝑁 ‘ 𝑥 ) ) |
| 105 |
104
|
breq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑁 ‘ 𝑧 ) ≤ 1 ↔ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) |
| 106 |
105
|
elrab |
⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) |
| 107 |
103 106
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) |
| 108 |
10 25
|
dmmptd |
⊢ ( 𝜑 → dom 𝐹 = 𝑋 ) |
| 109 |
108
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝑋 ) ) |
| 110 |
109
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom 𝐹 ) |
| 111 |
|
funfvima |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) ) |
| 112 |
27 111
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) ) |
| 113 |
110 112
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) ) |
| 114 |
113
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) ) |
| 115 |
107 114
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) |
| 116 |
115 11
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐾 ) |
| 117 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) = ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 118 |
117
|
breq1d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 119 |
118
|
rspcv |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐾 → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 120 |
116 119
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 121 |
18
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 122 |
121 121
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 123 |
26
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) ) |
| 124 |
7
|
cnnvba |
⊢ ℂ = ( BaseSet ‘ 𝑊 ) |
| 125 |
1 124 98 22
|
nmblore |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 126 |
12 96 125
|
mp3an12 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 127 |
123 126
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 128 |
127
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 129 |
128 121
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 130 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → 𝑦 ∈ ℝ ) |
| 131 |
130 121
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 132 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 133 |
132
|
oveq2d |
⊢ ( 𝑧 = 𝑥 → ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) = ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
| 134 |
133
|
mpteq2dv |
⊢ ( 𝑧 = 𝑥 → ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 135 |
134 10 1
|
mptfvmpt |
⊢ ( 𝑥 ∈ 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 136 |
135
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 137 |
136
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 138 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝑇 ‘ 𝑥 ) → ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
| 139 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
| 140 |
|
ovex |
⊢ ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ∈ V |
| 141 |
138 139 140
|
fvmpt |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 → ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
| 142 |
16 141
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
| 143 |
137 142
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
| 144 |
143
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
| 145 |
16
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) |
| 146 |
1 5 2
|
ipidsq |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 147 |
12 145 146
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 148 |
144 147
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 149 |
148
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) ) |
| 150 |
|
resqcl |
⊢ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ∈ ℝ ) |
| 151 |
|
sqge0 |
⊢ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ → 0 ≤ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 152 |
150 151
|
absidd |
⊢ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ → ( abs ‘ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 153 |
121 152
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( abs ‘ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 154 |
121
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℂ ) |
| 155 |
154
|
sqvald |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 156 |
149 153 155
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 157 |
123
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) ) |
| 158 |
1 5 97 98 22 12 96
|
nmblolbi |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 159 |
157 145 158
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 160 |
156 159
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 161 |
12 145 67
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 162 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
| 163 |
128 130 121 161 162
|
lemul1ad |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 164 |
122 129 131 160 163
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 165 |
|
lemul1 |
⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ↔ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 166 |
165
|
biimprd |
⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 167 |
166
|
3expia |
⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 168 |
167
|
expdimp |
⊢ ( ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) → ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 169 |
121 130 121 168
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 170 |
164 169
|
mpid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 171 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → 0 ∈ ℝ ) |
| 172 |
1 124 22
|
blof |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) ) → ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ ) |
| 173 |
12 96 172
|
mp3an12 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) → ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ ) |
| 174 |
123 173
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ ) |
| 175 |
174
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ ) |
| 176 |
1 124 98
|
nmooge0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ ) → 0 ≤ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 177 |
12 96 176
|
mp3an12 |
⊢ ( ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ → 0 ≤ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 178 |
175 177
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → 0 ≤ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 179 |
171 128 130 178 162
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → 0 ≤ 𝑦 ) |
| 180 |
|
breq1 |
⊢ ( 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( 0 ≤ 𝑦 ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 181 |
179 180
|
syl5ibcom |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 182 |
|
0re |
⊢ 0 ∈ ℝ |
| 183 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) → ( 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∨ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 184 |
182 121 183
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∨ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 185 |
161 184
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∨ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 186 |
170 181 185
|
mpjaod |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) |
| 187 |
186
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 188 |
187
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 189 |
120 188
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 190 |
189
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 191 |
190
|
com23 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 192 |
191
|
ralrimdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 193 |
192
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 194 |
102 193
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 195 |
|
eqid |
⊢ ( 𝑈 normOpOLD 𝑈 ) = ( 𝑈 normOpOLD 𝑈 ) |
| 196 |
1 1 5 5 195 12 12
|
nmobndi |
⊢ ( 𝑇 : 𝑋 ⟶ 𝑋 → ( ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 197 |
15 196
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 198 |
194 197
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) ∈ ℝ ) |
| 199 |
|
ltpnf |
⊢ ( ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) ∈ ℝ → ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) < +∞ ) |
| 200 |
198 199
|
syl |
⊢ ( 𝜑 → ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) < +∞ ) |
| 201 |
195 3 4
|
isblo |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) < +∞ ) ) ) |
| 202 |
12 12 201
|
mp2an |
⊢ ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) < +∞ ) ) |
| 203 |
8 200 202
|
sylanbrc |
⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) |