Step |
Hyp |
Ref |
Expression |
1 |
|
htth.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
htth.2 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
3 |
|
htth.3 |
⊢ 𝐿 = ( 𝑈 LnOp 𝑈 ) |
4 |
|
htth.4 |
⊢ 𝐵 = ( 𝑈 BLnOp 𝑈 ) |
5 |
|
htthlem.5 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
6 |
|
htthlem.6 |
⊢ 𝑈 ∈ CHilOLD |
7 |
|
htthlem.7 |
⊢ 𝑊 = 〈 〈 + , · 〉 , abs 〉 |
8 |
|
htthlem.8 |
⊢ ( 𝜑 → 𝑇 ∈ 𝐿 ) |
9 |
|
htthlem.9 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) |
10 |
|
htthlem.10 |
⊢ 𝐹 = ( 𝑧 ∈ 𝑋 ↦ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) ) |
11 |
|
htthlem.11 |
⊢ 𝐾 = ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) |
12 |
6
|
hlnvi |
⊢ 𝑈 ∈ NrmCVec |
13 |
1 1 3
|
lnof |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ 𝑋 ) |
14 |
12 12 13
|
mp3an12 |
⊢ ( 𝑇 ∈ 𝐿 → 𝑇 : 𝑋 ⟶ 𝑋 ) |
15 |
8 14
|
syl |
⊢ ( 𝜑 → 𝑇 : 𝑋 ⟶ 𝑋 ) |
16 |
15
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) |
17 |
1 5
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
18 |
12 16 17
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
19 |
15
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑧 ) ∈ 𝑋 ) |
20 |
|
hlph |
⊢ ( 𝑈 ∈ CHilOLD → 𝑈 ∈ CPreHilOLD ) |
21 |
6 20
|
ax-mp |
⊢ 𝑈 ∈ CPreHilOLD |
22 |
|
eqid |
⊢ ( 𝑈 BLnOp 𝑊 ) = ( 𝑈 BLnOp 𝑊 ) |
23 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) |
24 |
1 2 21 7 22 23
|
ipblnfi |
⊢ ( ( 𝑇 ‘ 𝑧 ) ∈ 𝑋 → ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) ∈ ( 𝑈 BLnOp 𝑊 ) ) |
25 |
19 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) ∈ ( 𝑈 BLnOp 𝑊 ) ) |
26 |
25 10
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 𝑈 BLnOp 𝑊 ) ) |
27 |
26
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Fun 𝐹 ) |
29 |
|
id |
⊢ ( 𝑤 ∈ 𝐾 → 𝑤 ∈ 𝐾 ) |
30 |
29 11
|
eleqtrdi |
⊢ ( 𝑤 ∈ 𝐾 → 𝑤 ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) |
31 |
|
fvelima |
⊢ ( ( Fun 𝐹 ∧ 𝑤 ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) → ∃ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ( 𝐹 ‘ 𝑦 ) = 𝑤 ) |
32 |
28 30 31
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝐾 ) → ∃ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ( 𝐹 ‘ 𝑦 ) = 𝑤 ) |
33 |
32
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑤 ∈ 𝐾 → ∃ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ( 𝐹 ‘ 𝑦 ) = 𝑤 ) ) |
34 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑁 ‘ 𝑧 ) = ( 𝑁 ‘ 𝑦 ) ) |
35 |
34
|
breq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑁 ‘ 𝑧 ) ≤ 1 ↔ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) |
36 |
35
|
elrab |
⊢ ( 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ↔ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) |
37 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑦 ) ) |
38 |
37
|
oveq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) = ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) |
39 |
38
|
mpteq2dv |
⊢ ( 𝑧 = 𝑦 → ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) ) |
40 |
39 10 1
|
mptfvmpt |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) ) |
41 |
40
|
fveq1d |
⊢ ( 𝑦 ∈ 𝑋 → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) ‘ 𝑥 ) ) |
42 |
|
oveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) |
43 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) |
44 |
|
ovex |
⊢ ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ∈ V |
45 |
42 43 44
|
fvmpt |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) ‘ 𝑥 ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) |
46 |
41 45
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) |
47 |
46
|
ad2ant2lr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) |
48 |
|
rsp2 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ) |
49 |
9 48
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ) |
50 |
49
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) |
51 |
50
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) |
52 |
47 51
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) |
53 |
52
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) = ( abs ‘ ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ) |
54 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) → 𝑦 ∈ 𝑋 ) |
55 |
1 2
|
dipcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ∈ ℂ ) |
56 |
12 55
|
mp3an1 |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ∈ ℂ ) |
57 |
16 54 56
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ∈ ℂ ) |
58 |
57
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ∈ ℝ ) |
59 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
60 |
1 5
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑦 ) ∈ ℝ ) |
61 |
12 60
|
mpan |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝑁 ‘ 𝑦 ) ∈ ℝ ) |
62 |
61
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( 𝑁 ‘ 𝑦 ) ∈ ℝ ) |
63 |
59 62
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ∈ ℝ ) |
64 |
1 5 2 21
|
sii |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ≤ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ) |
65 |
16 54 64
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ≤ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ) |
66 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → 1 ∈ ℝ ) |
67 |
1 5
|
nvge0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
68 |
12 16 67
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
69 |
18 68
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
70 |
69
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
71 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( 𝑁 ‘ 𝑦 ) ≤ 1 ) |
72 |
|
lemul2a |
⊢ ( ( ( ( 𝑁 ‘ 𝑦 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ≤ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · 1 ) ) |
73 |
62 66 70 71 72
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ≤ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · 1 ) ) |
74 |
59
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℂ ) |
75 |
74
|
mulid1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · 1 ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
76 |
73 75
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
77 |
58 63 59 65 76
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
78 |
53 77
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
79 |
36 78
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
80 |
|
fveq1 |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑤 ‘ 𝑥 ) ) |
81 |
80
|
fveq2d |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) = ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ) |
82 |
81
|
breq1d |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
83 |
79 82
|
syl5ibcom |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) → ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
84 |
83
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
85 |
33 84
|
syld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑤 ∈ 𝐾 → ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
86 |
85
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
87 |
|
brralrspcev |
⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ) |
88 |
18 86 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ) |
89 |
88
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ) |
90 |
|
imassrn |
⊢ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ⊆ ran 𝐹 |
91 |
11 90
|
eqsstri |
⊢ 𝐾 ⊆ ran 𝐹 |
92 |
26
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑈 BLnOp 𝑊 ) ) |
93 |
91 92
|
sstrid |
⊢ ( 𝜑 → 𝐾 ⊆ ( 𝑈 BLnOp 𝑊 ) ) |
94 |
|
hlobn |
⊢ ( 𝑈 ∈ CHilOLD → 𝑈 ∈ CBan ) |
95 |
6 94
|
ax-mp |
⊢ 𝑈 ∈ CBan |
96 |
7
|
cnnv |
⊢ 𝑊 ∈ NrmCVec |
97 |
7
|
cnnvnm |
⊢ abs = ( normCV ‘ 𝑊 ) |
98 |
|
eqid |
⊢ ( 𝑈 normOpOLD 𝑊 ) = ( 𝑈 normOpOLD 𝑊 ) |
99 |
1 97 98
|
ubth |
⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝐾 ⊆ ( 𝑈 BLnOp 𝑊 ) ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
100 |
95 96 99
|
mp3an12 |
⊢ ( 𝐾 ⊆ ( 𝑈 BLnOp 𝑊 ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
101 |
93 100
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
102 |
89 101
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 ) |
103 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) |
104 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑁 ‘ 𝑧 ) = ( 𝑁 ‘ 𝑥 ) ) |
105 |
104
|
breq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑁 ‘ 𝑧 ) ≤ 1 ↔ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) |
106 |
105
|
elrab |
⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) |
107 |
103 106
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) |
108 |
10 25
|
dmmptd |
⊢ ( 𝜑 → dom 𝐹 = 𝑋 ) |
109 |
108
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝑋 ) ) |
110 |
109
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom 𝐹 ) |
111 |
|
funfvima |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) ) |
112 |
27 111
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) ) |
113 |
110 112
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) ) |
114 |
113
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) ) |
115 |
107 114
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) |
116 |
115 11
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐾 ) |
117 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) = ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
118 |
117
|
breq1d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
119 |
118
|
rspcv |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐾 → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
120 |
116 119
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
121 |
18
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
122 |
121 121
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
123 |
26
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) ) |
124 |
7
|
cnnvba |
⊢ ℂ = ( BaseSet ‘ 𝑊 ) |
125 |
1 124 98 22
|
nmblore |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
126 |
12 96 125
|
mp3an12 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
127 |
123 126
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
128 |
127
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
129 |
128 121
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
130 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → 𝑦 ∈ ℝ ) |
131 |
130 121
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
132 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑥 ) ) |
133 |
132
|
oveq2d |
⊢ ( 𝑧 = 𝑥 → ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) = ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
134 |
133
|
mpteq2dv |
⊢ ( 𝑧 = 𝑥 → ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ) |
135 |
134 10 1
|
mptfvmpt |
⊢ ( 𝑥 ∈ 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ) |
136 |
135
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ) |
137 |
136
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
138 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝑇 ‘ 𝑥 ) → ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
139 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
140 |
|
ovex |
⊢ ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ∈ V |
141 |
138 139 140
|
fvmpt |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 → ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
142 |
16 141
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
143 |
137 142
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
144 |
143
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
145 |
16
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) |
146 |
1 5 2
|
ipidsq |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
147 |
12 145 146
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
148 |
144 147
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
149 |
148
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) ) |
150 |
|
resqcl |
⊢ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ∈ ℝ ) |
151 |
|
sqge0 |
⊢ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ → 0 ≤ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
152 |
150 151
|
absidd |
⊢ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ → ( abs ‘ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
153 |
121 152
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( abs ‘ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
154 |
121
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℂ ) |
155 |
154
|
sqvald |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
156 |
149 153 155
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
157 |
123
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) ) |
158 |
1 5 97 98 22 12 96
|
nmblolbi |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
159 |
157 145 158
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
160 |
156 159
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
161 |
12 145 67
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
162 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
163 |
128 130 121 161 162
|
lemul1ad |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
164 |
122 129 131 160 163
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
165 |
|
lemul1 |
⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ↔ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
166 |
165
|
biimprd |
⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
167 |
166
|
3expia |
⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
168 |
167
|
expdimp |
⊢ ( ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) → ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
169 |
121 130 121 168
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
170 |
164 169
|
mpid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
171 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → 0 ∈ ℝ ) |
172 |
1 124 22
|
blof |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) ) → ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ ) |
173 |
12 96 172
|
mp3an12 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) → ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ ) |
174 |
123 173
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ ) |
175 |
174
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ ) |
176 |
1 124 98
|
nmooge0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ ) → 0 ≤ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
177 |
12 96 176
|
mp3an12 |
⊢ ( ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ → 0 ≤ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
178 |
175 177
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → 0 ≤ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
179 |
171 128 130 178 162
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → 0 ≤ 𝑦 ) |
180 |
|
breq1 |
⊢ ( 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( 0 ≤ 𝑦 ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
181 |
179 180
|
syl5ibcom |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
182 |
|
0re |
⊢ 0 ∈ ℝ |
183 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) → ( 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∨ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
184 |
182 121 183
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∨ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
185 |
161 184
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∨ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
186 |
170 181 185
|
mpjaod |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) |
187 |
186
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
188 |
187
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
189 |
120 188
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
190 |
189
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
191 |
190
|
com23 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
192 |
191
|
ralrimdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
193 |
192
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
194 |
102 193
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
195 |
|
eqid |
⊢ ( 𝑈 normOpOLD 𝑈 ) = ( 𝑈 normOpOLD 𝑈 ) |
196 |
1 1 5 5 195 12 12
|
nmobndi |
⊢ ( 𝑇 : 𝑋 ⟶ 𝑋 → ( ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
197 |
15 196
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
198 |
194 197
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) ∈ ℝ ) |
199 |
|
ltpnf |
⊢ ( ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) ∈ ℝ → ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) < +∞ ) |
200 |
198 199
|
syl |
⊢ ( 𝜑 → ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) < +∞ ) |
201 |
195 3 4
|
isblo |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) < +∞ ) ) ) |
202 |
12 12 201
|
mp2an |
⊢ ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) < +∞ ) ) |
203 |
8 200 202
|
sylanbrc |
⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) |