Description: Two ways to express the negative of a vector. (Contributed by NM, 23-May-2005) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hv2neg | ⊢ ( 𝐴 ∈ ℋ → ( 0ℎ −ℎ 𝐴 ) = ( - 1 ·ℎ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
2 | hvsubval | ⊢ ( ( 0ℎ ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 0ℎ −ℎ 𝐴 ) = ( 0ℎ +ℎ ( - 1 ·ℎ 𝐴 ) ) ) | |
3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℋ → ( 0ℎ −ℎ 𝐴 ) = ( 0ℎ +ℎ ( - 1 ·ℎ 𝐴 ) ) ) |
4 | neg1cn | ⊢ - 1 ∈ ℂ | |
5 | hvmulcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( - 1 ·ℎ 𝐴 ) ∈ ℋ ) | |
6 | 4 5 | mpan | ⊢ ( 𝐴 ∈ ℋ → ( - 1 ·ℎ 𝐴 ) ∈ ℋ ) |
7 | hvaddid2 | ⊢ ( ( - 1 ·ℎ 𝐴 ) ∈ ℋ → ( 0ℎ +ℎ ( - 1 ·ℎ 𝐴 ) ) = ( - 1 ·ℎ 𝐴 ) ) | |
8 | 6 7 | syl | ⊢ ( 𝐴 ∈ ℋ → ( 0ℎ +ℎ ( - 1 ·ℎ 𝐴 ) ) = ( - 1 ·ℎ 𝐴 ) ) |
9 | 3 8 | eqtrd | ⊢ ( 𝐴 ∈ ℋ → ( 0ℎ −ℎ 𝐴 ) = ( - 1 ·ℎ 𝐴 ) ) |