Metamath Proof Explorer


Theorem hv2neg

Description: Two ways to express the negative of a vector. (Contributed by NM, 23-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hv2neg ( 𝐴 ∈ ℋ → ( 0 𝐴 ) = ( - 1 · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0 ∈ ℋ
2 hvsubval ( ( 0 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 0 𝐴 ) = ( 0 + ( - 1 · 𝐴 ) ) )
3 1 2 mpan ( 𝐴 ∈ ℋ → ( 0 𝐴 ) = ( 0 + ( - 1 · 𝐴 ) ) )
4 neg1cn - 1 ∈ ℂ
5 hvmulcl ( ( - 1 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( - 1 · 𝐴 ) ∈ ℋ )
6 4 5 mpan ( 𝐴 ∈ ℋ → ( - 1 · 𝐴 ) ∈ ℋ )
7 hvaddid2 ( ( - 1 · 𝐴 ) ∈ ℋ → ( 0 + ( - 1 · 𝐴 ) ) = ( - 1 · 𝐴 ) )
8 6 7 syl ( 𝐴 ∈ ℋ → ( 0 + ( - 1 · 𝐴 ) ) = ( - 1 · 𝐴 ) )
9 3 8 eqtrd ( 𝐴 ∈ ℋ → ( 0 𝐴 ) = ( - 1 · 𝐴 ) )