Step |
Hyp |
Ref |
Expression |
1 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
2 |
1
|
oveq1i |
⊢ ( 2 ·ℎ 𝐴 ) = ( ( 1 + 1 ) ·ℎ 𝐴 ) |
3 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
4 |
|
ax-hvdistr2 |
⊢ ( ( 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 1 + 1 ) ·ℎ 𝐴 ) = ( ( 1 ·ℎ 𝐴 ) +ℎ ( 1 ·ℎ 𝐴 ) ) ) |
5 |
3 3 4
|
mp3an12 |
⊢ ( 𝐴 ∈ ℋ → ( ( 1 + 1 ) ·ℎ 𝐴 ) = ( ( 1 ·ℎ 𝐴 ) +ℎ ( 1 ·ℎ 𝐴 ) ) ) |
6 |
2 5
|
eqtrid |
⊢ ( 𝐴 ∈ ℋ → ( 2 ·ℎ 𝐴 ) = ( ( 1 ·ℎ 𝐴 ) +ℎ ( 1 ·ℎ 𝐴 ) ) ) |
7 |
|
ax-hvdistr1 |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 1 ·ℎ ( 𝐴 +ℎ 𝐴 ) ) = ( ( 1 ·ℎ 𝐴 ) +ℎ ( 1 ·ℎ 𝐴 ) ) ) |
8 |
3 7
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 1 ·ℎ ( 𝐴 +ℎ 𝐴 ) ) = ( ( 1 ·ℎ 𝐴 ) +ℎ ( 1 ·ℎ 𝐴 ) ) ) |
9 |
8
|
anidms |
⊢ ( 𝐴 ∈ ℋ → ( 1 ·ℎ ( 𝐴 +ℎ 𝐴 ) ) = ( ( 1 ·ℎ 𝐴 ) +ℎ ( 1 ·ℎ 𝐴 ) ) ) |
10 |
|
hvaddcl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 +ℎ 𝐴 ) ∈ ℋ ) |
11 |
10
|
anidms |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 +ℎ 𝐴 ) ∈ ℋ ) |
12 |
|
ax-hvmulid |
⊢ ( ( 𝐴 +ℎ 𝐴 ) ∈ ℋ → ( 1 ·ℎ ( 𝐴 +ℎ 𝐴 ) ) = ( 𝐴 +ℎ 𝐴 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝐴 ∈ ℋ → ( 1 ·ℎ ( 𝐴 +ℎ 𝐴 ) ) = ( 𝐴 +ℎ 𝐴 ) ) |
14 |
6 9 13
|
3eqtr2d |
⊢ ( 𝐴 ∈ ℋ → ( 2 ·ℎ 𝐴 ) = ( 𝐴 +ℎ 𝐴 ) ) |