Metamath Proof Explorer


Theorem hv2times

Description: Two times a vector. (Contributed by NM, 22-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hv2times ( 𝐴 ∈ ℋ → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-2 2 = ( 1 + 1 )
2 1 oveq1i ( 2 · 𝐴 ) = ( ( 1 + 1 ) · 𝐴 )
3 ax-1cn 1 ∈ ℂ
4 ax-hvdistr2 ( ( 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 1 + 1 ) · 𝐴 ) = ( ( 1 · 𝐴 ) + ( 1 · 𝐴 ) ) )
5 3 3 4 mp3an12 ( 𝐴 ∈ ℋ → ( ( 1 + 1 ) · 𝐴 ) = ( ( 1 · 𝐴 ) + ( 1 · 𝐴 ) ) )
6 2 5 syl5eq ( 𝐴 ∈ ℋ → ( 2 · 𝐴 ) = ( ( 1 · 𝐴 ) + ( 1 · 𝐴 ) ) )
7 ax-hvdistr1 ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 1 · ( 𝐴 + 𝐴 ) ) = ( ( 1 · 𝐴 ) + ( 1 · 𝐴 ) ) )
8 3 7 mp3an1 ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 1 · ( 𝐴 + 𝐴 ) ) = ( ( 1 · 𝐴 ) + ( 1 · 𝐴 ) ) )
9 8 anidms ( 𝐴 ∈ ℋ → ( 1 · ( 𝐴 + 𝐴 ) ) = ( ( 1 · 𝐴 ) + ( 1 · 𝐴 ) ) )
10 hvaddcl ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 + 𝐴 ) ∈ ℋ )
11 10 anidms ( 𝐴 ∈ ℋ → ( 𝐴 + 𝐴 ) ∈ ℋ )
12 ax-hvmulid ( ( 𝐴 + 𝐴 ) ∈ ℋ → ( 1 · ( 𝐴 + 𝐴 ) ) = ( 𝐴 + 𝐴 ) )
13 11 12 syl ( 𝐴 ∈ ℋ → ( 1 · ( 𝐴 + 𝐴 ) ) = ( 𝐴 + 𝐴 ) )
14 6 9 13 3eqtr2d ( 𝐴 ∈ ℋ → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) )