Description: Hilbert vector space commutative/associative law. (Contributed by NM, 11-Sep-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hvass.1 | ⊢ 𝐴 ∈ ℋ | |
hvass.2 | ⊢ 𝐵 ∈ ℋ | ||
hvass.3 | ⊢ 𝐶 ∈ ℋ | ||
Assertion | hvadd12i | ⊢ ( 𝐴 +ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐵 +ℎ ( 𝐴 +ℎ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvass.1 | ⊢ 𝐴 ∈ ℋ | |
2 | hvass.2 | ⊢ 𝐵 ∈ ℋ | |
3 | hvass.3 | ⊢ 𝐶 ∈ ℋ | |
4 | 1 2 | hvcomi | ⊢ ( 𝐴 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐴 ) |
5 | 4 | oveq1i | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) = ( ( 𝐵 +ℎ 𝐴 ) +ℎ 𝐶 ) |
6 | 1 2 3 | hvassi | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) = ( 𝐴 +ℎ ( 𝐵 +ℎ 𝐶 ) ) |
7 | 2 1 3 | hvassi | ⊢ ( ( 𝐵 +ℎ 𝐴 ) +ℎ 𝐶 ) = ( 𝐵 +ℎ ( 𝐴 +ℎ 𝐶 ) ) |
8 | 5 6 7 | 3eqtr3i | ⊢ ( 𝐴 +ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐵 +ℎ ( 𝐴 +ℎ 𝐶 ) ) |