Metamath Proof Explorer


Theorem hvadd12i

Description: Hilbert vector space commutative/associative law. (Contributed by NM, 11-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvass.1 𝐴 ∈ ℋ
hvass.2 𝐵 ∈ ℋ
hvass.3 𝐶 ∈ ℋ
Assertion hvadd12i ( 𝐴 + ( 𝐵 + 𝐶 ) ) = ( 𝐵 + ( 𝐴 + 𝐶 ) )

Proof

Step Hyp Ref Expression
1 hvass.1 𝐴 ∈ ℋ
2 hvass.2 𝐵 ∈ ℋ
3 hvass.3 𝐶 ∈ ℋ
4 1 2 hvcomi ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 )
5 4 oveq1i ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐵 + 𝐴 ) + 𝐶 )
6 1 2 3 hvassi ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) )
7 2 1 3 hvassi ( ( 𝐵 + 𝐴 ) + 𝐶 ) = ( 𝐵 + ( 𝐴 + 𝐶 ) )
8 5 6 7 3eqtr3i ( 𝐴 + ( 𝐵 + 𝐶 ) ) = ( 𝐵 + ( 𝐴 + 𝐶 ) )