Description: Hilbert vector space commutative/associative law. (Contributed by NM, 11-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvass.1 | ⊢ 𝐴 ∈ ℋ | |
| hvass.2 | ⊢ 𝐵 ∈ ℋ | ||
| hvass.3 | ⊢ 𝐶 ∈ ℋ | ||
| Assertion | hvadd12i | ⊢ ( 𝐴 +ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐵 +ℎ ( 𝐴 +ℎ 𝐶 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hvass.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | hvass.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | hvass.3 | ⊢ 𝐶 ∈ ℋ | |
| 4 | 1 2 | hvcomi | ⊢ ( 𝐴 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐴 ) | 
| 5 | 4 | oveq1i | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) = ( ( 𝐵 +ℎ 𝐴 ) +ℎ 𝐶 ) | 
| 6 | 1 2 3 | hvassi | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) = ( 𝐴 +ℎ ( 𝐵 +ℎ 𝐶 ) ) | 
| 7 | 2 1 3 | hvassi | ⊢ ( ( 𝐵 +ℎ 𝐴 ) +ℎ 𝐶 ) = ( 𝐵 +ℎ ( 𝐴 +ℎ 𝐶 ) ) | 
| 8 | 5 6 7 | 3eqtr3i | ⊢ ( 𝐴 +ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐵 +ℎ ( 𝐴 +ℎ 𝐶 ) ) |