Metamath Proof Explorer


Theorem hvadd32

Description: Commutative/associative law. (Contributed by NM, 16-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion hvadd32 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐴 + 𝐶 ) + 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ax-hvcom ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) )
2 1 oveq2d ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 + ( 𝐵 + 𝐶 ) ) = ( 𝐴 + ( 𝐶 + 𝐵 ) ) )
3 2 3adant1 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 + ( 𝐵 + 𝐶 ) ) = ( 𝐴 + ( 𝐶 + 𝐵 ) ) )
4 ax-hvass ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) )
5 ax-hvass ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 + 𝐶 ) + 𝐵 ) = ( 𝐴 + ( 𝐶 + 𝐵 ) ) )
6 5 3com23 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐶 ) + 𝐵 ) = ( 𝐴 + ( 𝐶 + 𝐵 ) ) )
7 3 4 6 3eqtr4d ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐴 + 𝐶 ) + 𝐵 ) )