| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-hvcom | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐵  +ℎ  𝐶 )  =  ( 𝐶  +ℎ  𝐵 ) ) | 
						
							| 2 | 1 | oveq2d | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐴  +ℎ  ( 𝐵  +ℎ  𝐶 ) )  =  ( 𝐴  +ℎ  ( 𝐶  +ℎ  𝐵 ) ) ) | 
						
							| 3 | 2 | 3adant1 | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐴  +ℎ  ( 𝐵  +ℎ  𝐶 ) )  =  ( 𝐴  +ℎ  ( 𝐶  +ℎ  𝐵 ) ) ) | 
						
							| 4 |  | ax-hvass | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  +ℎ  𝐵 )  +ℎ  𝐶 )  =  ( 𝐴  +ℎ  ( 𝐵  +ℎ  𝐶 ) ) ) | 
						
							| 5 |  | ax-hvass | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐶  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  +ℎ  𝐶 )  +ℎ  𝐵 )  =  ( 𝐴  +ℎ  ( 𝐶  +ℎ  𝐵 ) ) ) | 
						
							| 6 | 5 | 3com23 | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  +ℎ  𝐶 )  +ℎ  𝐵 )  =  ( 𝐴  +ℎ  ( 𝐶  +ℎ  𝐵 ) ) ) | 
						
							| 7 | 3 4 6 | 3eqtr4d | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  +ℎ  𝐵 )  +ℎ  𝐶 )  =  ( ( 𝐴  +ℎ  𝐶 )  +ℎ  𝐵 ) ) |