Metamath Proof Explorer


Theorem hvadd32i

Description: Hilbert vector space commutative/associative law. (Contributed by NM, 18-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvass.1 𝐴 ∈ ℋ
hvass.2 𝐵 ∈ ℋ
hvass.3 𝐶 ∈ ℋ
Assertion hvadd32i ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐴 + 𝐶 ) + 𝐵 )

Proof

Step Hyp Ref Expression
1 hvass.1 𝐴 ∈ ℋ
2 hvass.2 𝐵 ∈ ℋ
3 hvass.3 𝐶 ∈ ℋ
4 hvadd32 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐴 + 𝐶 ) + 𝐵 ) )
5 1 2 3 4 mp3an ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐴 + 𝐶 ) + 𝐵 )