Metamath Proof Explorer
		
		
		
		Description:  Hilbert vector space addition law.  (Contributed by NM, 3-Sep-1999)
         (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | hvass.1 | ⊢ 𝐴  ∈   ℋ | 
					
						|  |  | hvass.2 | ⊢ 𝐵  ∈   ℋ | 
					
						|  |  | hvass.3 | ⊢ 𝐶  ∈   ℋ | 
					
						|  |  | hvadd4.4 | ⊢ 𝐷  ∈   ℋ | 
				
					|  | Assertion | hvadd4i | ⊢  ( ( 𝐴  +ℎ  𝐵 )  +ℎ  ( 𝐶  +ℎ  𝐷 ) )  =  ( ( 𝐴  +ℎ  𝐶 )  +ℎ  ( 𝐵  +ℎ  𝐷 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvass.1 | ⊢ 𝐴  ∈   ℋ | 
						
							| 2 |  | hvass.2 | ⊢ 𝐵  ∈   ℋ | 
						
							| 3 |  | hvass.3 | ⊢ 𝐶  ∈   ℋ | 
						
							| 4 |  | hvadd4.4 | ⊢ 𝐷  ∈   ℋ | 
						
							| 5 |  | hvadd4 | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( ( 𝐴  +ℎ  𝐵 )  +ℎ  ( 𝐶  +ℎ  𝐷 ) )  =  ( ( 𝐴  +ℎ  𝐶 )  +ℎ  ( 𝐵  +ℎ  𝐷 ) ) ) | 
						
							| 6 | 1 2 3 4 5 | mp4an | ⊢ ( ( 𝐴  +ℎ  𝐵 )  +ℎ  ( 𝐶  +ℎ  𝐷 ) )  =  ( ( 𝐴  +ℎ  𝐶 )  +ℎ  ( 𝐵  +ℎ  𝐷 ) ) |