| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-hvcom | ⊢ ( ( 𝐶  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( 𝐶  +ℎ  𝐴 )  =  ( 𝐴  +ℎ  𝐶 ) ) | 
						
							| 2 | 1 | 3adant3 | ⊢ ( ( 𝐶  ∈   ℋ  ∧  𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝐶  +ℎ  𝐴 )  =  ( 𝐴  +ℎ  𝐶 ) ) | 
						
							| 3 |  | ax-hvcom | ⊢ ( ( 𝐶  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝐶  +ℎ  𝐵 )  =  ( 𝐵  +ℎ  𝐶 ) ) | 
						
							| 4 | 3 | 3adant2 | ⊢ ( ( 𝐶  ∈   ℋ  ∧  𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝐶  +ℎ  𝐵 )  =  ( 𝐵  +ℎ  𝐶 ) ) | 
						
							| 5 | 2 4 | eqeq12d | ⊢ ( ( 𝐶  ∈   ℋ  ∧  𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐶  +ℎ  𝐴 )  =  ( 𝐶  +ℎ  𝐵 )  ↔  ( 𝐴  +ℎ  𝐶 )  =  ( 𝐵  +ℎ  𝐶 ) ) ) | 
						
							| 6 |  | hvaddcan | ⊢ ( ( 𝐶  ∈   ℋ  ∧  𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐶  +ℎ  𝐴 )  =  ( 𝐶  +ℎ  𝐵 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 7 | 5 6 | bitr3d | ⊢ ( ( 𝐶  ∈   ℋ  ∧  𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  +ℎ  𝐶 )  =  ( 𝐵  +ℎ  𝐶 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 8 | 7 | 3coml | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  +ℎ  𝐶 )  =  ( 𝐵  +ℎ  𝐶 )  ↔  𝐴  =  𝐵 ) ) |