Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hvcom |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐶 +ℎ 𝐴 ) = ( 𝐴 +ℎ 𝐶 ) ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 +ℎ 𝐴 ) = ( 𝐴 +ℎ 𝐶 ) ) |
3 |
|
ax-hvcom |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐶 ) ) |
4 |
3
|
3adant2 |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐶 ) ) |
5 |
2 4
|
eqeq12d |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐶 +ℎ 𝐴 ) = ( 𝐶 +ℎ 𝐵 ) ↔ ( 𝐴 +ℎ 𝐶 ) = ( 𝐵 +ℎ 𝐶 ) ) ) |
6 |
|
hvaddcan |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐶 +ℎ 𝐴 ) = ( 𝐶 +ℎ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
7 |
5 6
|
bitr3d |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐶 ) = ( 𝐵 +ℎ 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
8 |
7
|
3coml |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐶 ) = ( 𝐵 +ℎ 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |