| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvnegdi.1 | ⊢ 𝐴  ∈   ℋ | 
						
							| 2 |  | hvnegdi.2 | ⊢ 𝐵  ∈   ℋ | 
						
							| 3 |  | hvaddcan.3 | ⊢ 𝐶  ∈   ℋ | 
						
							| 4 |  | oveq1 | ⊢ ( ( 𝐴  +ℎ  𝐵 )  =  ( 𝐴  +ℎ  𝐶 )  →  ( ( 𝐴  +ℎ  𝐵 )  +ℎ  ( - 1  ·ℎ  𝐴 ) )  =  ( ( 𝐴  +ℎ  𝐶 )  +ℎ  ( - 1  ·ℎ  𝐴 ) ) ) | 
						
							| 5 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 6 | 5 1 | hvmulcli | ⊢ ( - 1  ·ℎ  𝐴 )  ∈   ℋ | 
						
							| 7 | 1 2 6 | hvadd32i | ⊢ ( ( 𝐴  +ℎ  𝐵 )  +ℎ  ( - 1  ·ℎ  𝐴 ) )  =  ( ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐴 ) )  +ℎ  𝐵 ) | 
						
							| 8 | 1 | hvnegidi | ⊢ ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐴 ) )  =  0ℎ | 
						
							| 9 | 8 | oveq1i | ⊢ ( ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐴 ) )  +ℎ  𝐵 )  =  ( 0ℎ  +ℎ  𝐵 ) | 
						
							| 10 | 2 | hvaddlidi | ⊢ ( 0ℎ  +ℎ  𝐵 )  =  𝐵 | 
						
							| 11 | 7 9 10 | 3eqtri | ⊢ ( ( 𝐴  +ℎ  𝐵 )  +ℎ  ( - 1  ·ℎ  𝐴 ) )  =  𝐵 | 
						
							| 12 | 1 3 6 | hvadd32i | ⊢ ( ( 𝐴  +ℎ  𝐶 )  +ℎ  ( - 1  ·ℎ  𝐴 ) )  =  ( ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐴 ) )  +ℎ  𝐶 ) | 
						
							| 13 | 8 | oveq1i | ⊢ ( ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐴 ) )  +ℎ  𝐶 )  =  ( 0ℎ  +ℎ  𝐶 ) | 
						
							| 14 | 3 | hvaddlidi | ⊢ ( 0ℎ  +ℎ  𝐶 )  =  𝐶 | 
						
							| 15 | 12 13 14 | 3eqtri | ⊢ ( ( 𝐴  +ℎ  𝐶 )  +ℎ  ( - 1  ·ℎ  𝐴 ) )  =  𝐶 | 
						
							| 16 | 4 11 15 | 3eqtr3g | ⊢ ( ( 𝐴  +ℎ  𝐵 )  =  ( 𝐴  +ℎ  𝐶 )  →  𝐵  =  𝐶 ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝐵  =  𝐶  →  ( 𝐴  +ℎ  𝐵 )  =  ( 𝐴  +ℎ  𝐶 ) ) | 
						
							| 18 | 16 17 | impbii | ⊢ ( ( 𝐴  +ℎ  𝐵 )  =  ( 𝐴  +ℎ  𝐶 )  ↔  𝐵  =  𝐶 ) |