Step |
Hyp |
Ref |
Expression |
1 |
|
hvnegdi.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
hvnegdi.2 |
⊢ 𝐵 ∈ ℋ |
3 |
|
hvaddcan.3 |
⊢ 𝐶 ∈ ℋ |
4 |
|
oveq1 |
⊢ ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐶 ) → ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) = ( ( 𝐴 +ℎ 𝐶 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) ) |
5 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
6 |
5 1
|
hvmulcli |
⊢ ( - 1 ·ℎ 𝐴 ) ∈ ℋ |
7 |
1 2 6
|
hvadd32i |
⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐴 ) ) +ℎ 𝐵 ) |
8 |
1
|
hvnegidi |
⊢ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐴 ) ) = 0ℎ |
9 |
8
|
oveq1i |
⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐴 ) ) +ℎ 𝐵 ) = ( 0ℎ +ℎ 𝐵 ) |
10 |
2
|
hvaddid2i |
⊢ ( 0ℎ +ℎ 𝐵 ) = 𝐵 |
11 |
7 9 10
|
3eqtri |
⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) = 𝐵 |
12 |
1 3 6
|
hvadd32i |
⊢ ( ( 𝐴 +ℎ 𝐶 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐴 ) ) +ℎ 𝐶 ) |
13 |
8
|
oveq1i |
⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐴 ) ) +ℎ 𝐶 ) = ( 0ℎ +ℎ 𝐶 ) |
14 |
3
|
hvaddid2i |
⊢ ( 0ℎ +ℎ 𝐶 ) = 𝐶 |
15 |
12 13 14
|
3eqtri |
⊢ ( ( 𝐴 +ℎ 𝐶 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) = 𝐶 |
16 |
4 11 15
|
3eqtr3g |
⊢ ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐶 ) → 𝐵 = 𝐶 ) |
17 |
|
oveq2 |
⊢ ( 𝐵 = 𝐶 → ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐶 ) ) |
18 |
16 17
|
impbii |
⊢ ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) |