Metamath Proof Explorer


Theorem hvaddcani

Description: Cancellation law for vector addition. (Contributed by NM, 11-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvnegdi.1 𝐴 ∈ ℋ
hvnegdi.2 𝐵 ∈ ℋ
hvaddcan.3 𝐶 ∈ ℋ
Assertion hvaddcani ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) ↔ 𝐵 = 𝐶 )

Proof

Step Hyp Ref Expression
1 hvnegdi.1 𝐴 ∈ ℋ
2 hvnegdi.2 𝐵 ∈ ℋ
3 hvaddcan.3 𝐶 ∈ ℋ
4 oveq1 ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) → ( ( 𝐴 + 𝐵 ) + ( - 1 · 𝐴 ) ) = ( ( 𝐴 + 𝐶 ) + ( - 1 · 𝐴 ) ) )
5 neg1cn - 1 ∈ ℂ
6 5 1 hvmulcli ( - 1 · 𝐴 ) ∈ ℋ
7 1 2 6 hvadd32i ( ( 𝐴 + 𝐵 ) + ( - 1 · 𝐴 ) ) = ( ( 𝐴 + ( - 1 · 𝐴 ) ) + 𝐵 )
8 1 hvnegidi ( 𝐴 + ( - 1 · 𝐴 ) ) = 0
9 8 oveq1i ( ( 𝐴 + ( - 1 · 𝐴 ) ) + 𝐵 ) = ( 0 + 𝐵 )
10 2 hvaddid2i ( 0 + 𝐵 ) = 𝐵
11 7 9 10 3eqtri ( ( 𝐴 + 𝐵 ) + ( - 1 · 𝐴 ) ) = 𝐵
12 1 3 6 hvadd32i ( ( 𝐴 + 𝐶 ) + ( - 1 · 𝐴 ) ) = ( ( 𝐴 + ( - 1 · 𝐴 ) ) + 𝐶 )
13 8 oveq1i ( ( 𝐴 + ( - 1 · 𝐴 ) ) + 𝐶 ) = ( 0 + 𝐶 )
14 3 hvaddid2i ( 0 + 𝐶 ) = 𝐶
15 12 13 14 3eqtri ( ( 𝐴 + 𝐶 ) + ( - 1 · 𝐴 ) ) = 𝐶
16 4 11 15 3eqtr3g ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) → 𝐵 = 𝐶 )
17 oveq2 ( 𝐵 = 𝐶 → ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) )
18 16 17 impbii ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) ↔ 𝐵 = 𝐶 )