Metamath Proof Explorer


Theorem hvaddcl

Description: Closure of vector addition. (Contributed by NM, 18-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion hvaddcl ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 + 𝐵 ) ∈ ℋ )

Proof

Step Hyp Ref Expression
1 ax-hfvadd + : ( ℋ × ℋ ) ⟶ ℋ
2 1 fovcl ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 + 𝐵 ) ∈ ℋ )