Step |
Hyp |
Ref |
Expression |
1 |
|
hvaddsubval |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 −ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
2 |
1
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) = 0ℎ ↔ ( 𝐴 −ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ ) ) |
3 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
4 |
|
hvmulcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) |
5 |
3 4
|
mpan |
⊢ ( 𝐵 ∈ ℋ → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) |
6 |
|
hvsubeq0 |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) → ( ( 𝐴 −ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ ↔ 𝐴 = ( - 1 ·ℎ 𝐵 ) ) ) |
7 |
5 6
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 −ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ ↔ 𝐴 = ( - 1 ·ℎ 𝐵 ) ) ) |
8 |
2 7
|
bitrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) = 0ℎ ↔ 𝐴 = ( - 1 ·ℎ 𝐵 ) ) ) |