Metamath Proof Explorer


Theorem hvaddid2

Description: Addition with the zero vector. (Contributed by NM, 18-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion hvaddid2 ( 𝐴 ∈ ℋ → ( 0 + 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0 ∈ ℋ
2 ax-hvcom ( ( 𝐴 ∈ ℋ ∧ 0 ∈ ℋ ) → ( 𝐴 + 0 ) = ( 0 + 𝐴 ) )
3 1 2 mpan2 ( 𝐴 ∈ ℋ → ( 𝐴 + 0 ) = ( 0 + 𝐴 ) )
4 ax-hvaddid ( 𝐴 ∈ ℋ → ( 𝐴 + 0 ) = 𝐴 )
5 3 4 eqtr3d ( 𝐴 ∈ ℋ → ( 0 + 𝐴 ) = 𝐴 )