Description: Addition with the zero vector. (Contributed by NM, 18-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hvaddid2 | ⊢ ( 𝐴 ∈ ℋ → ( 0ℎ +ℎ 𝐴 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
2 | ax-hvcom | ⊢ ( ( 𝐴 ∈ ℋ ∧ 0ℎ ∈ ℋ ) → ( 𝐴 +ℎ 0ℎ ) = ( 0ℎ +ℎ 𝐴 ) ) | |
3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 +ℎ 0ℎ ) = ( 0ℎ +ℎ 𝐴 ) ) |
4 | ax-hvaddid | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 +ℎ 0ℎ ) = 𝐴 ) | |
5 | 3 4 | eqtr3d | ⊢ ( 𝐴 ∈ ℋ → ( 0ℎ +ℎ 𝐴 ) = 𝐴 ) |