Metamath Proof Explorer


Theorem hvaddsubass

Description: Associativity of sum and difference of Hilbert space vectors. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Assertion hvaddsubass ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( 𝐴 + ( 𝐵 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 neg1cn - 1 ∈ ℂ
2 hvmulcl ( ( - 1 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( - 1 · 𝐶 ) ∈ ℋ )
3 1 2 mpan ( 𝐶 ∈ ℋ → ( - 1 · 𝐶 ) ∈ ℋ )
4 ax-hvass ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( - 1 · 𝐶 ) ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) + ( - 1 · 𝐶 ) ) = ( 𝐴 + ( 𝐵 + ( - 1 · 𝐶 ) ) ) )
5 3 4 syl3an3 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) + ( - 1 · 𝐶 ) ) = ( 𝐴 + ( 𝐵 + ( - 1 · 𝐶 ) ) ) )
6 hvaddcl ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 + 𝐵 ) ∈ ℋ )
7 hvsubval ( ( ( 𝐴 + 𝐵 ) ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( ( 𝐴 + 𝐵 ) + ( - 1 · 𝐶 ) ) )
8 6 7 stoic3 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( ( 𝐴 + 𝐵 ) + ( - 1 · 𝐶 ) ) )
9 hvsubval ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 𝐶 ) = ( 𝐵 + ( - 1 · 𝐶 ) ) )
10 9 3adant1 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 𝐶 ) = ( 𝐵 + ( - 1 · 𝐶 ) ) )
11 10 oveq2d ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 + ( 𝐵 𝐶 ) ) = ( 𝐴 + ( 𝐵 + ( - 1 · 𝐶 ) ) ) )
12 5 8 11 3eqtr4d ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( 𝐴 + ( 𝐵 𝐶 ) ) )