Metamath Proof Explorer


Theorem hvaddsubval

Description: Value of vector addition in terms of vector subtraction. (Contributed by NM, 10-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hvaddsubval ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 + 𝐵 ) = ( 𝐴 ( - 1 · 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 neg1cn - 1 ∈ ℂ
2 hvmulcl ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 · 𝐵 ) ∈ ℋ )
3 1 2 mpan ( 𝐵 ∈ ℋ → ( - 1 · 𝐵 ) ∈ ℋ )
4 hvsubval ( ( 𝐴 ∈ ℋ ∧ ( - 1 · 𝐵 ) ∈ ℋ ) → ( 𝐴 ( - 1 · 𝐵 ) ) = ( 𝐴 + ( - 1 · ( - 1 · 𝐵 ) ) ) )
5 3 4 sylan2 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ( - 1 · 𝐵 ) ) = ( 𝐴 + ( - 1 · ( - 1 · 𝐵 ) ) ) )
6 hvm1neg ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 · ( - 1 · 𝐵 ) ) = ( - - 1 · 𝐵 ) )
7 1 6 mpan ( 𝐵 ∈ ℋ → ( - 1 · ( - 1 · 𝐵 ) ) = ( - - 1 · 𝐵 ) )
8 negneg1e1 - - 1 = 1
9 8 oveq1i ( - - 1 · 𝐵 ) = ( 1 · 𝐵 )
10 7 9 eqtrdi ( 𝐵 ∈ ℋ → ( - 1 · ( - 1 · 𝐵 ) ) = ( 1 · 𝐵 ) )
11 ax-hvmulid ( 𝐵 ∈ ℋ → ( 1 · 𝐵 ) = 𝐵 )
12 10 11 eqtrd ( 𝐵 ∈ ℋ → ( - 1 · ( - 1 · 𝐵 ) ) = 𝐵 )
13 12 adantl ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( - 1 · ( - 1 · 𝐵 ) ) = 𝐵 )
14 13 oveq2d ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 + ( - 1 · ( - 1 · 𝐵 ) ) ) = ( 𝐴 + 𝐵 ) )
15 5 14 eqtr2d ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 + 𝐵 ) = ( 𝐴 ( - 1 · 𝐵 ) ) )