Step |
Hyp |
Ref |
Expression |
1 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
2 |
|
hvmulcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) |
3 |
1 2
|
mpan |
⊢ ( 𝐵 ∈ ℋ → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) |
4 |
|
hvsubval |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) → ( 𝐴 −ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) ) ) |
5 |
3 4
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) ) ) |
6 |
|
hvm1neg |
⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) = ( - - 1 ·ℎ 𝐵 ) ) |
7 |
1 6
|
mpan |
⊢ ( 𝐵 ∈ ℋ → ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) = ( - - 1 ·ℎ 𝐵 ) ) |
8 |
|
negneg1e1 |
⊢ - - 1 = 1 |
9 |
8
|
oveq1i |
⊢ ( - - 1 ·ℎ 𝐵 ) = ( 1 ·ℎ 𝐵 ) |
10 |
7 9
|
eqtrdi |
⊢ ( 𝐵 ∈ ℋ → ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 1 ·ℎ 𝐵 ) ) |
11 |
|
ax-hvmulid |
⊢ ( 𝐵 ∈ ℋ → ( 1 ·ℎ 𝐵 ) = 𝐵 ) |
12 |
10 11
|
eqtrd |
⊢ ( 𝐵 ∈ ℋ → ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) = 𝐵 ) |
13 |
12
|
adantl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) = 𝐵 ) |
14 |
13
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐴 +ℎ 𝐵 ) ) |
15 |
5 14
|
eqtr2d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 −ℎ ( - 1 ·ℎ 𝐵 ) ) ) |