Metamath Proof Explorer
		
		
		
		Description:  Hilbert vector space associative law.  (Contributed by NM, 3-Sep-1999)
       (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						hvass.1 | 
						⊢ 𝐴  ∈   ℋ  | 
					
					
						 | 
						 | 
						hvass.2 | 
						⊢ 𝐵  ∈   ℋ  | 
					
					
						 | 
						 | 
						hvass.3 | 
						⊢ 𝐶  ∈   ℋ  | 
					
				
					 | 
					Assertion | 
					hvassi | 
					⊢  ( ( 𝐴  +ℎ  𝐵 )  +ℎ  𝐶 )  =  ( 𝐴  +ℎ  ( 𝐵  +ℎ  𝐶 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							hvass.1 | 
							⊢ 𝐴  ∈   ℋ  | 
						
						
							| 2 | 
							
								
							 | 
							hvass.2 | 
							⊢ 𝐵  ∈   ℋ  | 
						
						
							| 3 | 
							
								
							 | 
							hvass.3 | 
							⊢ 𝐶  ∈   ℋ  | 
						
						
							| 4 | 
							
								
							 | 
							ax-hvass | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  +ℎ  𝐵 )  +ℎ  𝐶 )  =  ( 𝐴  +ℎ  ( 𝐵  +ℎ  𝐶 ) ) )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							mp3an | 
							⊢ ( ( 𝐴  +ℎ  𝐵 )  +ℎ  𝐶 )  =  ( 𝐴  +ℎ  ( 𝐵  +ℎ  𝐶 ) )  |