Metamath Proof Explorer
Description: Hilbert vector space associative law. (Contributed by NM, 3-Sep-1999)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
hvass.1 |
⊢ 𝐴 ∈ ℋ |
|
|
hvass.2 |
⊢ 𝐵 ∈ ℋ |
|
|
hvass.3 |
⊢ 𝐶 ∈ ℋ |
|
Assertion |
hvassi |
⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) = ( 𝐴 +ℎ ( 𝐵 +ℎ 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
hvass.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
hvass.2 |
⊢ 𝐵 ∈ ℋ |
3 |
|
hvass.3 |
⊢ 𝐶 ∈ ℋ |
4 |
|
ax-hvass |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) = ( 𝐴 +ℎ ( 𝐵 +ℎ 𝐶 ) ) ) |
5 |
1 2 3 4
|
mp3an |
⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) = ( 𝐴 +ℎ ( 𝐵 +ℎ 𝐶 ) ) |