Metamath Proof Explorer


Theorem hvassi

Description: Hilbert vector space associative law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvass.1 𝐴 ∈ ℋ
hvass.2 𝐵 ∈ ℋ
hvass.3 𝐶 ∈ ℋ
Assertion hvassi ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) )

Proof

Step Hyp Ref Expression
1 hvass.1 𝐴 ∈ ℋ
2 hvass.2 𝐵 ∈ ℋ
3 hvass.3 𝐶 ∈ ℋ
4 ax-hvass ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) )
5 1 2 3 4 mp3an ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) )