Metamath Proof Explorer


Theorem hvcomi

Description: Commutation of vector addition. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvaddcl.1 𝐴 ∈ ℋ
hvaddcl.2 𝐵 ∈ ℋ
Assertion hvcomi ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 )

Proof

Step Hyp Ref Expression
1 hvaddcl.1 𝐴 ∈ ℋ
2 hvaddcl.2 𝐵 ∈ ℋ
3 ax-hvcom ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) )
4 1 2 3 mp2an ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 )