Metamath Proof Explorer
Description: Commutation of vector addition. (Contributed by NM, 3-Sep-1999)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
hvaddcl.1 |
⊢ 𝐴 ∈ ℋ |
|
|
hvaddcl.2 |
⊢ 𝐵 ∈ ℋ |
|
Assertion |
hvcomi |
⊢ ( 𝐴 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
hvaddcl.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
hvaddcl.2 |
⊢ 𝐵 ∈ ℋ |
3 |
|
ax-hvcom |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐴 ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐴 ) |