Description: Convert minus one times a scalar product to the negative of the scalar. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hvm1neg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) = ( - 𝐴 ·ℎ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn | ⊢ - 1 ∈ ℂ | |
2 | ax-hvmulass | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( - 1 · 𝐴 ) ·ℎ 𝐵 ) = ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) | |
3 | 1 2 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( - 1 · 𝐴 ) ·ℎ 𝐵 ) = ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) |
4 | mulm1 | ⊢ ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 ) | |
5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 · 𝐴 ) = - 𝐴 ) |
6 | 5 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( - 1 · 𝐴 ) ·ℎ 𝐵 ) = ( - 𝐴 ·ℎ 𝐵 ) ) |
7 | 3 6 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) = ( - 𝐴 ·ℎ 𝐵 ) ) |