Metamath Proof Explorer


Theorem hvm1neg

Description: Convert minus one times a scalar product to the negative of the scalar. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion hvm1neg ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 · ( 𝐴 · 𝐵 ) ) = ( - 𝐴 · 𝐵 ) )

Proof

Step Hyp Ref Expression
1 neg1cn - 1 ∈ ℂ
2 ax-hvmulass ( ( - 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( - 1 · 𝐴 ) · 𝐵 ) = ( - 1 · ( 𝐴 · 𝐵 ) ) )
3 1 2 mp3an1 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( - 1 · 𝐴 ) · 𝐵 ) = ( - 1 · ( 𝐴 · 𝐵 ) ) )
4 mulm1 ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 )
5 4 adantr ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 · 𝐴 ) = - 𝐴 )
6 5 oveq1d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( - 1 · 𝐴 ) · 𝐵 ) = ( - 𝐴 · 𝐵 ) )
7 3 6 eqtr3d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 · ( 𝐴 · 𝐵 ) ) = ( - 𝐴 · 𝐵 ) )