Metamath Proof Explorer


Theorem hvmul0

Description: Scalar multiplication with the zero vector. (Contributed by NM, 30-May-1999) (New usage is discouraged.)

Ref Expression
Assertion hvmul0 ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 )

Proof

Step Hyp Ref Expression
1 mul01 ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 )
2 1 oveq1d ( 𝐴 ∈ ℂ → ( ( 𝐴 · 0 ) · 0 ) = ( 0 · 0 ) )
3 ax-hv0cl 0 ∈ ℋ
4 ax-hvmul0 ( 0 ∈ ℋ → ( 0 · 0 ) = 0 )
5 3 4 ax-mp ( 0 · 0 ) = 0
6 2 5 eqtrdi ( 𝐴 ∈ ℂ → ( ( 𝐴 · 0 ) · 0 ) = 0 )
7 0cn 0 ∈ ℂ
8 ax-hvmulass ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 0 ∈ ℋ ) → ( ( 𝐴 · 0 ) · 0 ) = ( 𝐴 · ( 0 · 0 ) ) )
9 7 3 8 mp3an23 ( 𝐴 ∈ ℂ → ( ( 𝐴 · 0 ) · 0 ) = ( 𝐴 · ( 0 · 0 ) ) )
10 6 9 eqtr3d ( 𝐴 ∈ ℂ → 0 = ( 𝐴 · ( 0 · 0 ) ) )
11 5 oveq2i ( 𝐴 · ( 0 · 0 ) ) = ( 𝐴 · 0 )
12 10 11 eqtr2di ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 )