| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mul01 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 ) |
| 2 |
1
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 · 0 ) ·ℎ 0ℎ ) = ( 0 ·ℎ 0ℎ ) ) |
| 3 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
| 4 |
|
ax-hvmul0 |
⊢ ( 0ℎ ∈ ℋ → ( 0 ·ℎ 0ℎ ) = 0ℎ ) |
| 5 |
3 4
|
ax-mp |
⊢ ( 0 ·ℎ 0ℎ ) = 0ℎ |
| 6 |
2 5
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 · 0 ) ·ℎ 0ℎ ) = 0ℎ ) |
| 7 |
|
0cn |
⊢ 0 ∈ ℂ |
| 8 |
|
ax-hvmulass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 0ℎ ∈ ℋ ) → ( ( 𝐴 · 0 ) ·ℎ 0ℎ ) = ( 𝐴 ·ℎ ( 0 ·ℎ 0ℎ ) ) ) |
| 9 |
7 3 8
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 · 0 ) ·ℎ 0ℎ ) = ( 𝐴 ·ℎ ( 0 ·ℎ 0ℎ ) ) ) |
| 10 |
6 9
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → 0ℎ = ( 𝐴 ·ℎ ( 0 ·ℎ 0ℎ ) ) ) |
| 11 |
5
|
oveq2i |
⊢ ( 𝐴 ·ℎ ( 0 ·ℎ 0ℎ ) ) = ( 𝐴 ·ℎ 0ℎ ) |
| 12 |
10 11
|
eqtr2di |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·ℎ 0ℎ ) = 0ℎ ) |