Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
⊢ ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 ) |
2 |
|
oveq2 |
⊢ ( ( 𝐴 ·ℎ 𝐵 ) = 0ℎ → ( ( 1 / 𝐴 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( 1 / 𝐴 ) ·ℎ 0ℎ ) ) |
3 |
2
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( 1 / 𝐴 ) ·ℎ 0ℎ ) ) |
4 |
|
recid2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) |
5 |
4
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) ·ℎ 𝐵 ) = ( 1 ·ℎ 𝐵 ) ) |
6 |
5
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ≠ 0 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) ·ℎ 𝐵 ) = ( 1 ·ℎ 𝐵 ) ) |
7 |
|
reccl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
8 |
7
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
9 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
10 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ≠ 0 ) → 𝐵 ∈ ℋ ) |
11 |
|
ax-hvmulass |
⊢ ( ( ( 1 / 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) ·ℎ 𝐵 ) = ( ( 1 / 𝐴 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) |
12 |
8 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ≠ 0 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) ·ℎ 𝐵 ) = ( ( 1 / 𝐴 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) |
13 |
|
ax-hvmulid |
⊢ ( 𝐵 ∈ ℋ → ( 1 ·ℎ 𝐵 ) = 𝐵 ) |
14 |
13
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ≠ 0 ) → ( 1 ·ℎ 𝐵 ) = 𝐵 ) |
15 |
6 12 14
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) = 𝐵 ) |
16 |
15
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) = 𝐵 ) |
17 |
|
hvmul0 |
⊢ ( ( 1 / 𝐴 ) ∈ ℂ → ( ( 1 / 𝐴 ) ·ℎ 0ℎ ) = 0ℎ ) |
18 |
7 17
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) ·ℎ 0ℎ ) = 0ℎ ) |
19 |
18
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) ·ℎ 0ℎ ) = 0ℎ ) |
20 |
19
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) ·ℎ 0ℎ ) = 0ℎ ) |
21 |
3 16 20
|
3eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ∧ 𝐴 ≠ 0 ) → 𝐵 = 0ℎ ) |
22 |
21
|
ex |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) → ( 𝐴 ≠ 0 → 𝐵 = 0ℎ ) ) |
23 |
1 22
|
syl5bir |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) → ( ¬ 𝐴 = 0 → 𝐵 = 0ℎ ) ) |
24 |
23
|
orrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) → ( 𝐴 = 0 ∨ 𝐵 = 0ℎ ) ) |
25 |
24
|
ex |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) = 0ℎ → ( 𝐴 = 0 ∨ 𝐵 = 0ℎ ) ) ) |
26 |
|
ax-hvmul0 |
⊢ ( 𝐵 ∈ ℋ → ( 0 ·ℎ 𝐵 ) = 0ℎ ) |
27 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ·ℎ 𝐵 ) = ( 0 ·ℎ 𝐵 ) ) |
28 |
27
|
eqeq1d |
⊢ ( 𝐴 = 0 → ( ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ↔ ( 0 ·ℎ 𝐵 ) = 0ℎ ) ) |
29 |
26 28
|
syl5ibrcom |
⊢ ( 𝐵 ∈ ℋ → ( 𝐴 = 0 → ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 = 0 → ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ) |
31 |
|
hvmul0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·ℎ 0ℎ ) = 0ℎ ) |
32 |
|
oveq2 |
⊢ ( 𝐵 = 0ℎ → ( 𝐴 ·ℎ 𝐵 ) = ( 𝐴 ·ℎ 0ℎ ) ) |
33 |
32
|
eqeq1d |
⊢ ( 𝐵 = 0ℎ → ( ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ↔ ( 𝐴 ·ℎ 0ℎ ) = 0ℎ ) ) |
34 |
31 33
|
syl5ibrcom |
⊢ ( 𝐴 ∈ ℂ → ( 𝐵 = 0ℎ → ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 = 0ℎ → ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ) |
36 |
30 35
|
jaod |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 = 0 ∨ 𝐵 = 0ℎ ) → ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ) ) |
37 |
25 36
|
impbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) = 0ℎ ↔ ( 𝐴 = 0 ∨ 𝐵 = 0ℎ ) ) ) |