Metamath Proof Explorer


Theorem hvmul2negi

Description: Double negative in scalar multiplication. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvmulcom.1 𝐴 ∈ ℂ
hvmulcom.2 𝐵 ∈ ℂ
hvmulcom.3 𝐶 ∈ ℋ
Assertion hvmul2negi ( - 𝐴 · ( - 𝐵 · 𝐶 ) ) = ( 𝐴 · ( 𝐵 · 𝐶 ) )

Proof

Step Hyp Ref Expression
1 hvmulcom.1 𝐴 ∈ ℂ
2 hvmulcom.2 𝐵 ∈ ℂ
3 hvmulcom.3 𝐶 ∈ ℋ
4 1 2 mul2negi ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 )
5 4 oveq1i ( ( - 𝐴 · - 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐵 ) · 𝐶 )
6 1 negcli - 𝐴 ∈ ℂ
7 2 negcli - 𝐵 ∈ ℂ
8 6 7 3 hvmulassi ( ( - 𝐴 · - 𝐵 ) · 𝐶 ) = ( - 𝐴 · ( - 𝐵 · 𝐶 ) )
9 1 2 3 hvmulassi ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) )
10 5 8 9 3eqtr3i ( - 𝐴 · ( - 𝐵 · 𝐶 ) ) = ( 𝐴 · ( 𝐵 · 𝐶 ) )