Description: Double negative in scalar multiplication. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hvmulcom.1 | ⊢ 𝐴 ∈ ℂ | |
hvmulcom.2 | ⊢ 𝐵 ∈ ℂ | ||
hvmulcom.3 | ⊢ 𝐶 ∈ ℋ | ||
Assertion | hvmul2negi | ⊢ ( - 𝐴 ·ℎ ( - 𝐵 ·ℎ 𝐶 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcom.1 | ⊢ 𝐴 ∈ ℂ | |
2 | hvmulcom.2 | ⊢ 𝐵 ∈ ℂ | |
3 | hvmulcom.3 | ⊢ 𝐶 ∈ ℋ | |
4 | 1 2 | mul2negi | ⊢ ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) |
5 | 4 | oveq1i | ⊢ ( ( - 𝐴 · - 𝐵 ) ·ℎ 𝐶 ) = ( ( 𝐴 · 𝐵 ) ·ℎ 𝐶 ) |
6 | 1 | negcli | ⊢ - 𝐴 ∈ ℂ |
7 | 2 | negcli | ⊢ - 𝐵 ∈ ℂ |
8 | 6 7 3 | hvmulassi | ⊢ ( ( - 𝐴 · - 𝐵 ) ·ℎ 𝐶 ) = ( - 𝐴 ·ℎ ( - 𝐵 ·ℎ 𝐶 ) ) |
9 | 1 2 3 | hvmulassi | ⊢ ( ( 𝐴 · 𝐵 ) ·ℎ 𝐶 ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) |
10 | 5 8 9 | 3eqtr3i | ⊢ ( - 𝐴 ·ℎ ( - 𝐵 ·ℎ 𝐶 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) |