Metamath Proof Explorer
		
		
		
		Description:  Scalar multiplication associative law.  (Contributed by NM, 3-Sep-1999)
       (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						hvmulcom.1 | 
						⊢ 𝐴  ∈  ℂ  | 
					
					
						 | 
						 | 
						hvmulcom.2 | 
						⊢ 𝐵  ∈  ℂ  | 
					
					
						 | 
						 | 
						hvmulcom.3 | 
						⊢ 𝐶  ∈   ℋ  | 
					
				
					 | 
					Assertion | 
					hvmulassi | 
					⊢  ( ( 𝐴  ·  𝐵 )  ·ℎ  𝐶 )  =  ( 𝐴  ·ℎ  ( 𝐵  ·ℎ  𝐶 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							hvmulcom.1 | 
							⊢ 𝐴  ∈  ℂ  | 
						
						
							| 2 | 
							
								
							 | 
							hvmulcom.2 | 
							⊢ 𝐵  ∈  ℂ  | 
						
						
							| 3 | 
							
								
							 | 
							hvmulcom.3 | 
							⊢ 𝐶  ∈   ℋ  | 
						
						
							| 4 | 
							
								
							 | 
							ax-hvmulass | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  ·  𝐵 )  ·ℎ  𝐶 )  =  ( 𝐴  ·ℎ  ( 𝐵  ·ℎ  𝐶 ) ) )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							mp3an | 
							⊢ ( ( 𝐴  ·  𝐵 )  ·ℎ  𝐶 )  =  ( 𝐴  ·ℎ  ( 𝐵  ·ℎ  𝐶 ) )  |