Metamath Proof Explorer


Theorem hvmulassi

Description: Scalar multiplication associative law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvmulcom.1 𝐴 ∈ ℂ
hvmulcom.2 𝐵 ∈ ℂ
hvmulcom.3 𝐶 ∈ ℋ
Assertion hvmulassi ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) )

Proof

Step Hyp Ref Expression
1 hvmulcom.1 𝐴 ∈ ℂ
2 hvmulcom.2 𝐵 ∈ ℂ
3 hvmulcom.3 𝐶 ∈ ℋ
4 ax-hvmulass ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) )
5 1 2 3 4 mp3an ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) )