Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
⊢ ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 ) |
2 |
|
biorf |
⊢ ( ¬ 𝐴 = 0 → ( ( 𝐵 −ℎ 𝐶 ) = 0ℎ ↔ ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ) ) |
3 |
1 2
|
sylbi |
⊢ ( 𝐴 ≠ 0 → ( ( 𝐵 −ℎ 𝐶 ) = 0ℎ ↔ ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ) ) |
4 |
3
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℋ ) → ( ( 𝐵 −ℎ 𝐶 ) = 0ℎ ↔ ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ) ) |
5 |
4
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐵 −ℎ 𝐶 ) = 0ℎ ↔ ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ) ) |
6 |
|
hvsubeq0 |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐵 −ℎ 𝐶 ) = 0ℎ ↔ 𝐵 = 𝐶 ) ) |
7 |
6
|
3adant1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐵 −ℎ 𝐶 ) = 0ℎ ↔ 𝐵 = 𝐶 ) ) |
8 |
|
hvsubdistr1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐵 ) −ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) |
9 |
8
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) = 0ℎ ↔ ( ( 𝐴 ·ℎ 𝐵 ) −ℎ ( 𝐴 ·ℎ 𝐶 ) ) = 0ℎ ) ) |
10 |
|
hvsubcl |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 −ℎ 𝐶 ) ∈ ℋ ) |
11 |
|
hvmul0or |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 −ℎ 𝐶 ) ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) = 0ℎ ↔ ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ) ) |
12 |
10 11
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( ( 𝐴 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) = 0ℎ ↔ ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ) ) |
13 |
12
|
3impb |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) = 0ℎ ↔ ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ) ) |
14 |
|
hvmulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) |
15 |
14
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) |
16 |
|
hvmulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) |
17 |
16
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) |
18 |
|
hvsubeq0 |
⊢ ( ( ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ∧ ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) → ( ( ( 𝐴 ·ℎ 𝐵 ) −ℎ ( 𝐴 ·ℎ 𝐶 ) ) = 0ℎ ↔ ( 𝐴 ·ℎ 𝐵 ) = ( 𝐴 ·ℎ 𝐶 ) ) ) |
19 |
15 17 18
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ( 𝐴 ·ℎ 𝐵 ) −ℎ ( 𝐴 ·ℎ 𝐶 ) ) = 0ℎ ↔ ( 𝐴 ·ℎ 𝐵 ) = ( 𝐴 ·ℎ 𝐶 ) ) ) |
20 |
9 13 19
|
3bitr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ↔ ( 𝐴 ·ℎ 𝐵 ) = ( 𝐴 ·ℎ 𝐶 ) ) ) |
21 |
20
|
3adant1r |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ↔ ( 𝐴 ·ℎ 𝐵 ) = ( 𝐴 ·ℎ 𝐶 ) ) ) |
22 |
5 7 21
|
3bitr3rd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) = ( 𝐴 ·ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |