| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ne | ⊢ ( 𝐴  ≠  0  ↔  ¬  𝐴  =  0 ) | 
						
							| 2 |  | biorf | ⊢ ( ¬  𝐴  =  0  →  ( ( 𝐵  −ℎ  𝐶 )  =  0ℎ  ↔  ( 𝐴  =  0  ∨  ( 𝐵  −ℎ  𝐶 )  =  0ℎ ) ) ) | 
						
							| 3 | 1 2 | sylbi | ⊢ ( 𝐴  ≠  0  →  ( ( 𝐵  −ℎ  𝐶 )  =  0ℎ  ↔  ( 𝐴  =  0  ∨  ( 𝐵  −ℎ  𝐶 )  =  0ℎ ) ) ) | 
						
							| 4 | 3 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐵  −ℎ  𝐶 )  =  0ℎ  ↔  ( 𝐴  =  0  ∨  ( 𝐵  −ℎ  𝐶 )  =  0ℎ ) ) ) | 
						
							| 5 | 4 | 3adant3 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐵  −ℎ  𝐶 )  =  0ℎ  ↔  ( 𝐴  =  0  ∨  ( 𝐵  −ℎ  𝐶 )  =  0ℎ ) ) ) | 
						
							| 6 |  | hvsubeq0 | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐵  −ℎ  𝐶 )  =  0ℎ  ↔  𝐵  =  𝐶 ) ) | 
						
							| 7 | 6 | 3adant1 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐵  −ℎ  𝐶 )  =  0ℎ  ↔  𝐵  =  𝐶 ) ) | 
						
							| 8 |  | hvsubdistr1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐴  ·ℎ  ( 𝐵  −ℎ  𝐶 ) )  =  ( ( 𝐴  ·ℎ  𝐵 )  −ℎ  ( 𝐴  ·ℎ  𝐶 ) ) ) | 
						
							| 9 | 8 | eqeq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  ·ℎ  ( 𝐵  −ℎ  𝐶 ) )  =  0ℎ  ↔  ( ( 𝐴  ·ℎ  𝐵 )  −ℎ  ( 𝐴  ·ℎ  𝐶 ) )  =  0ℎ ) ) | 
						
							| 10 |  | hvsubcl | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐵  −ℎ  𝐶 )  ∈   ℋ ) | 
						
							| 11 |  | hvmul0or | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝐵  −ℎ  𝐶 )  ∈   ℋ )  →  ( ( 𝐴  ·ℎ  ( 𝐵  −ℎ  𝐶 ) )  =  0ℎ  ↔  ( 𝐴  =  0  ∨  ( 𝐵  −ℎ  𝐶 )  =  0ℎ ) ) ) | 
						
							| 12 | 10 11 | sylan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ ) )  →  ( ( 𝐴  ·ℎ  ( 𝐵  −ℎ  𝐶 ) )  =  0ℎ  ↔  ( 𝐴  =  0  ∨  ( 𝐵  −ℎ  𝐶 )  =  0ℎ ) ) ) | 
						
							| 13 | 12 | 3impb | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  ·ℎ  ( 𝐵  −ℎ  𝐶 ) )  =  0ℎ  ↔  ( 𝐴  =  0  ∨  ( 𝐵  −ℎ  𝐶 )  =  0ℎ ) ) ) | 
						
							| 14 |  | hvmulcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( 𝐴  ·ℎ  𝐵 )  ∈   ℋ ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐴  ·ℎ  𝐵 )  ∈   ℋ ) | 
						
							| 16 |  | hvmulcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( 𝐴  ·ℎ  𝐶 )  ∈   ℋ ) | 
						
							| 17 | 16 | 3adant2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐴  ·ℎ  𝐶 )  ∈   ℋ ) | 
						
							| 18 |  | hvsubeq0 | ⊢ ( ( ( 𝐴  ·ℎ  𝐵 )  ∈   ℋ  ∧  ( 𝐴  ·ℎ  𝐶 )  ∈   ℋ )  →  ( ( ( 𝐴  ·ℎ  𝐵 )  −ℎ  ( 𝐴  ·ℎ  𝐶 ) )  =  0ℎ  ↔  ( 𝐴  ·ℎ  𝐵 )  =  ( 𝐴  ·ℎ  𝐶 ) ) ) | 
						
							| 19 | 15 17 18 | syl2anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( ( 𝐴  ·ℎ  𝐵 )  −ℎ  ( 𝐴  ·ℎ  𝐶 ) )  =  0ℎ  ↔  ( 𝐴  ·ℎ  𝐵 )  =  ( 𝐴  ·ℎ  𝐶 ) ) ) | 
						
							| 20 | 9 13 19 | 3bitr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  =  0  ∨  ( 𝐵  −ℎ  𝐶 )  =  0ℎ )  ↔  ( 𝐴  ·ℎ  𝐵 )  =  ( 𝐴  ·ℎ  𝐶 ) ) ) | 
						
							| 21 | 20 | 3adant1r | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  =  0  ∨  ( 𝐵  −ℎ  𝐶 )  =  0ℎ )  ↔  ( 𝐴  ·ℎ  𝐵 )  =  ( 𝐴  ·ℎ  𝐶 ) ) ) | 
						
							| 22 | 5 7 21 | 3bitr3rd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  ·ℎ  𝐵 )  =  ( 𝐴  ·ℎ  𝐶 )  ↔  𝐵  =  𝐶 ) ) |