| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvmulcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( 𝐴  ·ℎ  𝐶 )  ∈   ℋ ) | 
						
							| 2 | 1 | 3adant2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( 𝐴  ·ℎ  𝐶 )  ∈   ℋ ) | 
						
							| 3 |  | hvmulcl | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( 𝐵  ·ℎ  𝐶 )  ∈   ℋ ) | 
						
							| 4 | 3 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( 𝐵  ·ℎ  𝐶 )  ∈   ℋ ) | 
						
							| 5 |  | hvsubeq0 | ⊢ ( ( ( 𝐴  ·ℎ  𝐶 )  ∈   ℋ  ∧  ( 𝐵  ·ℎ  𝐶 )  ∈   ℋ )  →  ( ( ( 𝐴  ·ℎ  𝐶 )  −ℎ  ( 𝐵  ·ℎ  𝐶 ) )  =  0ℎ  ↔  ( 𝐴  ·ℎ  𝐶 )  =  ( 𝐵  ·ℎ  𝐶 ) ) ) | 
						
							| 6 | 2 4 5 | syl2anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( ( ( 𝐴  ·ℎ  𝐶 )  −ℎ  ( 𝐵  ·ℎ  𝐶 ) )  =  0ℎ  ↔  ( 𝐴  ·ℎ  𝐶 )  =  ( 𝐵  ·ℎ  𝐶 ) ) ) | 
						
							| 7 | 6 | 3adant3r | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈   ℋ  ∧  𝐶  ≠  0ℎ ) )  →  ( ( ( 𝐴  ·ℎ  𝐶 )  −ℎ  ( 𝐵  ·ℎ  𝐶 ) )  =  0ℎ  ↔  ( 𝐴  ·ℎ  𝐶 )  =  ( 𝐵  ·ℎ  𝐶 ) ) ) | 
						
							| 8 |  | hvsubdistr2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  −  𝐵 )  ·ℎ  𝐶 )  =  ( ( 𝐴  ·ℎ  𝐶 )  −ℎ  ( 𝐵  ·ℎ  𝐶 ) ) ) | 
						
							| 9 | 8 | eqeq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( ( ( 𝐴  −  𝐵 )  ·ℎ  𝐶 )  =  0ℎ  ↔  ( ( 𝐴  ·ℎ  𝐶 )  −ℎ  ( 𝐵  ·ℎ  𝐶 ) )  =  0ℎ ) ) | 
						
							| 10 |  | subcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  −  𝐵 )  ∈  ℂ ) | 
						
							| 11 |  | hvmul0or | ⊢ ( ( ( 𝐴  −  𝐵 )  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( ( ( 𝐴  −  𝐵 )  ·ℎ  𝐶 )  =  0ℎ  ↔  ( ( 𝐴  −  𝐵 )  =  0  ∨  𝐶  =  0ℎ ) ) ) | 
						
							| 12 | 10 11 | stoic3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( ( ( 𝐴  −  𝐵 )  ·ℎ  𝐶 )  =  0ℎ  ↔  ( ( 𝐴  −  𝐵 )  =  0  ∨  𝐶  =  0ℎ ) ) ) | 
						
							| 13 | 9 12 | bitr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( ( ( 𝐴  ·ℎ  𝐶 )  −ℎ  ( 𝐵  ·ℎ  𝐶 ) )  =  0ℎ  ↔  ( ( 𝐴  −  𝐵 )  =  0  ∨  𝐶  =  0ℎ ) ) ) | 
						
							| 14 | 13 | 3adant3r | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈   ℋ  ∧  𝐶  ≠  0ℎ ) )  →  ( ( ( 𝐴  ·ℎ  𝐶 )  −ℎ  ( 𝐵  ·ℎ  𝐶 ) )  =  0ℎ  ↔  ( ( 𝐴  −  𝐵 )  =  0  ∨  𝐶  =  0ℎ ) ) ) | 
						
							| 15 |  | df-ne | ⊢ ( 𝐶  ≠  0ℎ  ↔  ¬  𝐶  =  0ℎ ) | 
						
							| 16 |  | biorf | ⊢ ( ¬  𝐶  =  0ℎ  →  ( ( 𝐴  −  𝐵 )  =  0  ↔  ( 𝐶  =  0ℎ  ∨  ( 𝐴  −  𝐵 )  =  0 ) ) ) | 
						
							| 17 |  | orcom | ⊢ ( ( 𝐶  =  0ℎ  ∨  ( 𝐴  −  𝐵 )  =  0 )  ↔  ( ( 𝐴  −  𝐵 )  =  0  ∨  𝐶  =  0ℎ ) ) | 
						
							| 18 | 16 17 | bitrdi | ⊢ ( ¬  𝐶  =  0ℎ  →  ( ( 𝐴  −  𝐵 )  =  0  ↔  ( ( 𝐴  −  𝐵 )  =  0  ∨  𝐶  =  0ℎ ) ) ) | 
						
							| 19 | 15 18 | sylbi | ⊢ ( 𝐶  ≠  0ℎ  →  ( ( 𝐴  −  𝐵 )  =  0  ↔  ( ( 𝐴  −  𝐵 )  =  0  ∨  𝐶  =  0ℎ ) ) ) | 
						
							| 20 | 19 | ad2antll | ⊢ ( ( 𝐵  ∈  ℂ  ∧  ( 𝐶  ∈   ℋ  ∧  𝐶  ≠  0ℎ ) )  →  ( ( 𝐴  −  𝐵 )  =  0  ↔  ( ( 𝐴  −  𝐵 )  =  0  ∨  𝐶  =  0ℎ ) ) ) | 
						
							| 21 | 20 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈   ℋ  ∧  𝐶  ≠  0ℎ ) )  →  ( ( 𝐴  −  𝐵 )  =  0  ↔  ( ( 𝐴  −  𝐵 )  =  0  ∨  𝐶  =  0ℎ ) ) ) | 
						
							| 22 |  | subeq0 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  −  𝐵 )  =  0  ↔  𝐴  =  𝐵 ) ) | 
						
							| 23 | 22 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈   ℋ  ∧  𝐶  ≠  0ℎ ) )  →  ( ( 𝐴  −  𝐵 )  =  0  ↔  𝐴  =  𝐵 ) ) | 
						
							| 24 | 14 21 23 | 3bitr2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈   ℋ  ∧  𝐶  ≠  0ℎ ) )  →  ( ( ( 𝐴  ·ℎ  𝐶 )  −ℎ  ( 𝐵  ·ℎ  𝐶 ) )  =  0ℎ  ↔  𝐴  =  𝐵 ) ) | 
						
							| 25 | 7 24 | bitr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈   ℋ  ∧  𝐶  ≠  0ℎ ) )  →  ( ( 𝐴  ·ℎ  𝐶 )  =  ( 𝐵  ·ℎ  𝐶 )  ↔  𝐴  =  𝐵 ) ) |